Главная страница
Навигация по странице:

  • ТЕХНОЛОГИЙ И КОММУНИКАЦИЙ РЕСПУБЛИКИ УЗБЕКИСТАН ФЕРГАНСКИЙ ФИЛИАЛ ТАШКЕНТСКОГО УНИВЕРСТИТЕТА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ИМЕНИ МУХАММАДА АЛ-ХАРЕЗМИЙ

  • ПОДГОТОВЛЕНО НА ОСНОВЕ КВАЛИФИКАЦИОННОЙ ПРАКТИКИ ОТЧЕТ

  • ВЫВОД СПИСОК ЛИТЕРАТУРЫ Введение

  • Общие требования безопасности.

  • Автомати́ческая телефо́нная ста́нция

  • Автоматическая телефонная станция (

  • Волоконно-оптический кабель

  • Рабочая станция Рабочая станция

  • Соединение пайкой или сваркой

  • Соединительные изолирующие зажимы (СИЗ)

  • Отчеть АТС. Правила техники безопасности на связи Автоматиическая телефонная стаанция Волоконнооптический кабель Рабочая станция Соединительные изолирующие зажимы Необходимость распределительной коробки


    Скачать 342.16 Kb.
    НазваниеПравила техники безопасности на связи Автоматиическая телефонная стаанция Волоконнооптический кабель Рабочая станция Соединительные изолирующие зажимы Необходимость распределительной коробки
    Дата01.09.2022
    Размер342.16 Kb.
    Формат файлаdocx
    Имя файлаОтчеть АТС.docx
    ТипПравила
    #658209

    МИНИСТЕРСТВО ПО РАЗВИТИЮ ИНФОРМАЦИОННЫХ

    ТЕХНОЛОГИЙ И КОММУНИКАЦИЙ РЕСПУБЛИКИ

    УЗБЕКИСТАН ФЕРГАНСКИЙ ФИЛИАЛ ТАШКЕНТСКОГО

    УНИВЕРСТИТЕТА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

    ИМЕНИ МУХАММАДА АЛ-ХАРЕЗМИЙ

    ПОДГОТОВЛЕНО НА ОСНОВЕ КВАЛИФИКАЦИОННОЙ ПРАКТИКИ



    ОТЧЕТ


    РУКОВОДИТЕЛЬ ПРАКТИКИ УЧЕБНОГО ЗАВЕДЕНИЯ:
    РУКОВОДИТЕЛЬ УЧРЕЖДЕНИЕ:

    ПРАКТИКАНТ:

    ФЕРГАНА – 2021

    План:

    1. ВВЕДЕНИЕ

    Правила техники безопасности на связи


    Автоматиическая телефонная стаанция

    Волоконно-оптический кабель

    Рабочая станция

    Соединительные изолирующие зажимы

    Необходимость распределительной коробки

    1. ВЫВОД



    1. СПИСОК ЛИТЕРАТУРЫ

    Введение

    Телекоммуникации (греч. tele - вдаль, далеко и лат. communication - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на большие расстояния по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим, проводным и беспроводным каналам связи).

    Телекоммуникационные сети представляют собой комплекс аппаратных и программных средств, обеспечивающих передачу информационных сообщений между абонентами.

    К традиционным телекоммуникационным сетям относятся:

    • Компьютерные сети (для передачи данных).

    • Телефонные сети (передача голосовой информации).

    • Радиосети (передача голосовой информации - широковещательные услуги).

    • Телевизионные сети (передача голоса и изображения - широковещательные услуги).

    На разных этапах развития общества применялись новые методы, средства и технологии передачи информации в телекоммуникационных системах.

    Конвергенция телекоммуникационных сетей (радио, телефонных, телевизионных и вычислительных сетей) открывает новые возможности для передачи данных, голоса и изображения. Именно сеть Интернет претендует на роль глобальной универсальной мультисервисной (инфокоммуникационной ) сети нового поколения для качественной передачи данных, голоса и изображения

    Телекоммуникационные технологии - это совокупность алгоритмов, методов и средств передачи информации. Современные телекоммуникационные технологии основаны на использовании глобальных компьютерных сетей.

    Глобальные компьютерные сети - это компьютерные сети, которые объединяют территориальные и , локальные сети, а также отдельные компьютеры, удаленные друг от друга на большие расстояния. К наиболее известной глобальной сети относится сеть Интернет (составная сеть IP). Глобальная сеть Интернет была создана в 1990 году на базе сети ARPANet. Для передачи данных в сети Интернет используется семейство сетевых протоколов (стек) TCP/IP.

    Кроме того, к глобальным компьютерным сетям относятся: всемирная некоммерческая сеть FidoNet, EARNet, EUNet, CREN и другие глобальные сети. К Internet могут быть подключены и сети, которые не используют протокол IP, так называемые "чужие" сети (например, BITNET, DECnets и др.).




    Общие требования безопасности.


    К самостоятельной работе в качестве электромонтеров линейных сооружений электросвязи допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование в соответствии с требованиями органов здравоохранения, обученные безопасным методам работы, прошедшие проверку знаний по охране труда, имеющие соответствующую квалификацию согласно тарифно-квалификационному справочнику и соответствующую группу по электробезопасности.

    Работы на линейно-абонентских устройствах должны выполняться с применением индивидуальных средств защиты, предусмотренных Типовыми отраслевыми нормами выдачи спецодежды, спецобуви и других средств индивидуальной защиты.


    Автомати́ческая телефо́нная ста́нция

    Автомати́ческая телефо́нная ста́нция (АТС) — система устройств, обеспечивающая автоматическое (без участия оператора или телефонисток) соединение и поддержание телефонной связи между абонентами этой АТС, пользующимися для этого специальными конечными устройствами — телефонными аппаратамифаксами и др. (исторически такую станцию называли локальной АТС, то есть местной АТС, где нет выхода на наружные телефонные сети). Если же АТС является одним из элементов некоторой телефонной сети — то данная АТС должна обеспечивать соединение и поддержание связи со всеми абонентами сети — как «своими», так и подключенными к другим АТС сети.

    Система автоматических телефонных станций обеспечивает установление, поддержание и разрыв соединений между аппаратами, а также дополнительные возможности. Это обеспечивается применением телефонной сигнализации.

    1. Распознание станцией сигнала инициации вызова от абонента, которому требуется исходящая связь (в классических АТС — это срабатывание линейного реле в расположенном на АТС абонентском комплекте АК соответствующего абонента при снятии им трубки телефонного аппарата);

    2. Выдачу этому абоненту сигнала о готовности к приёму управляющей информации (исторически это непрерывный гудок);

    3. Приём информации о набираемом номере (первоначально набранные цифры номера передавались соответствующей последовательностью импульсов при обратном вращении диска номеронабирателя, в настоящее время обычно используют более краткие по времени многочастотные сигналы);

    4. Запоминание набранного номера;

    5. Поиск и выбор (из многих доступных комбинаций «свободных» элементов АТС) варианта проключение тракта связи от АК вызывающего абонента до АК вызываемого абонента (если это абонент той же АТС), либо до канала в направлении АТС вызываемого абонента. Маркирование выбранных элементов тракта «занятыми» в целях невозможности их использования для других соединений, одновременно осуществляемых данной АТС. В случае отсутствия свободных трактов — выдача соответствующего сигнала вызывающему абоненту (в АТС декадно-шаговой системы это был сигнал «занято» — частые гудки, который начинал звучать прямо в середине набора номера);

    6. Коммутацию, то есть непосредственное проключение выбранного тракта связи, что обеспечит последующий разговор абонентов по тракту;

    7. Передачу сигнала вызова вызываемому абоненту (исторически это периодические прерывистые звонки телефонного аппарата — звонки длительностью 1 сек с интервалами между ними по 4 сек, в настоящее время часто используются мелодии и др. сигналы). Одновременно вызывающему абоненту направляется тональный сигнал «контроль посылки вызова» (аналогичный по длительности: гудок — 1 сек, интервал — 4 сек). В случае, если телефонный аппарат вызываемого абонента занят, то есть у него снята трубка — выдача тонального сигнала «занято» (частые гудки с коротким интервалом между ними) вызывающему абоненту;

    8. Подключение к тракту вызываемого абонента после снятия им трубки своего телефонного аппарата;

    9. Принятие сигнала разъединения соединения от любого из абонентов (входящего или исходящего), когда будет положена трубка телефонного аппарата. Последующее разъединение элементов тракта связи, установленного между абонентами и маркировка его элементов «свободными» (это обеспечит возможность использовать эти элементы АТС, составлявших тракт связи между абонентами, в тех или иных комбинациях при установке других соединений, устанавливаемых управляющим оборудованием АТС в последующем).

    Возникновение первых АТС происходило параллельно и независимо в США и в России.

    Патент на АТС (US Patent No. 447918 10/6/1891) был выдан в 1889 году американскому изобретателю Элмону Строуджеру, создавшему работающую модель искателя ещё в 1888 году, когда ему было 49 лет.

    По одной из версий, к изобретению декадно-шагового искателя Элмона Строуджера подтолкнула недобросовестная конкуренция. А. Строуджер был владельцем похоронного бюро в городе Канзас-Сити (Миссури) и терпел убытки при получении заказов по телефону, так как телефонисткой на станции работала жена его прямого конкурента, владельца другой похоронной компании. Телефонистка направляла все звонки абонентов, вызывавших похоронное бюро, своему мужу. Элман Строуджер поклялся навсегда избавить общество от телефонисток и изобрёл автоматический телефонный коммутатор декадно-шагового типа ёмкостью до 99 абонентов. Построенные по системе Э. Строуджера АТС были весьма надёжны и находились в эксплуатации во всех странах мира до 70-х годов XX века. Такие АТС работают ещё и сегодня[2]. Элмон Браун Строуджер является также изобретателем номеронабирателя в виде вращающегося диска, который также в течение десятилетий использовался в телефонных аппаратах.

    Аналогичную автоматическую декадно-шаговую АТС, однако несколько иного принципа действия создали русские инженеры М. Ф. Фрейденберг и С. М. Апостолов-Бердичевский в 1893 году. Работая при кафедре прикладной физики и механики Императорского Новороссийского университета, они сконструировали автоматическую телефонную станцию («телефонный соединитель») на 250 номеров. Это изобретение было в 1895 году запатентовано в Великобритании (патент № 3954). В том же 1895 году два русских учёных усовершенствовали своё детище, снабдив его предыскателем для АТС ёмкостью в 10 тысяч номеров (английский патент № 10155). В 1896 году Фрейденберг изобрёл линейный машинный искатель для автоматической телефонной станции на 1 тысячу линий с общим многократным полем для группы искателей, а затем ввёл групповые искатели (английский патент № 18912)

    В СССР первые АТС производились с 1927 года на заводе «Красная заря» в Ленинграде, однако это была станция, построенная не на декадно-шаговых искателях, а так называемые машинные АТС (см. ниже).



    Автоматическая телефонная станция (NortelDMS)

    В машинных АТС для группы искателей предусматривается общий машинный привод, состоящий из нескольких постоянно вращающихся валов. Подвижная часть искателя приводится в движение при её временном сцеплении с вращающимся валом. Помимо привода, характерными особенностями автоматических станций машинной системы являются не декадное построение контактного поля, и обусловленное этим наличие регистра, то есть использование не прямого, а обходного принципа управления исканием. Своеобразны также конструкция искателя и принцип его работы. Как и подъёмно-вращательный, машинный искатель совершает движение двух видов, но в нём имеется две подвижные части — базовый блок и размещённая на нём рейка со щётками. Базовый блок вращается (вынужденное движение), поворачиваясь на такой угол, чтобы рейка оказалась против того ряда струн контактного поля, в который включены линии направления, выбранного при вынужденном движении базового блока. Затем рейка начинает свободное поступательное движение вдоль струн ряда и останавливается, когда её щётки соприкоснутся с той группой струн, в которую включена свободная в этот момент линия. Очень часто использовался такой вариант искания, когда рейка, не найдя свободного выхода, совершала обратное движение и могла двигаться взад-вперёд, до тех пор пока какая-нибудь из линий не освободится. Этот вариант давал особенно упорным абонентам возможность получить соединение в сильно перегруженном направлении, не набирая многократно один и тот же номер, а лишь держа трубку возле уха и терпеливо дожидаясь момента, когда нужное соединение будет наконец установлено. Наиболее сложная и дорогостоящая часть машинного искателя механическая. Контактное поле искателя составляет небольшую долю его стоимости. Очевидные экономические соображения продиктовали выбор конструкции искателя с большой ёмкостью контактного поля, что позволило уменьшить общее количество искателей на АТС.

    В Советском Союзе производились с 1927 г. на заводе «Красная заря». После окончания Великой Отечественной войны восстановить производство машинных станций не удалось, и было принято решение организовать на заводе «Красная заря» производство декадно-шаговых АТС. В Москве были следующие АТС машинной системы: 241, 245, 246, 231, 251 и др.

    В качестве коммутационных устройств используются многократные координатные соединители (МКС), представляющие собой электромагнитные приборы параллельного действия. Основным отличием от декадно-шаговых АТС является отсутствие индивидуальных управляющих устройств на каждом коммутационном приборе. Вместо них используются регистры (принимают и запоминают информацию) и маркёры (устанавливают соединение на отдельных ступенях искания по информации, получаемой от регистра).

    Коммутация осуществляется герконами (тем самым решается проблема окисления контактов в негерметичных реле прежних систем), а управление — электронное, микропроцессорное.

    Термином «квазиэлектронная АТС» часто называют также координатные АТС с электронным управлением. Качество связи таких систем лучше, нежели у электромеханических, однако выбранные при проектировании параметры абонентской линии создавали дополнительные сложности. Так, на АТС «Квант» с заниженным по сравнению с классическими значениями напряжением в линии возникала необходимость использования внешнего сетевого блока питания для электронных оконечных устройств — модемов и «кнопочных» телефонов.

    Электронные аналоговые[править | править код]




    Пуско-наладочные работы. АТС М-200. ЯкутскМарха.

    Коммутация аналогового сигнала осуществляется полупроводниковыми приборами, управление — микропроцессорное. Получили распространение только в качестве малых АТС небольшой ёмкости, в дальнейшем вытеснены электронными цифровыми. Сравнительно с другими схемами имеют низкую помехозащищённость.

    Электронные цифровые


    Коммутация и управление полностью цифровые. Аналоговый сигнал оцифровывается в абонентском комплекте и передаётся внутри АТС и между АТС в цифровом виде, что гарантирует отсутствие затухания и минимальное число помех независимо от длины пути между АТС.

    Интернет-АТС




    Asterisk, запущенный на неттопе, в роли офисной АТС

    Цифровые АТС, где используется не коммутация каналов, а коммутация пакетов, и транспортом является протокол IP. Такие АТС осуществляют коммутацию устройств IP-телефонии.

    Кросс (коммутационнораспределительное оборудование средств связи), кроссовый узел — помещение или пространство, отведенное под коммутацию телекоммуникационных проводов.

    Если идет речь о небольшой телефонной станции или локальной сети ЛВС, то это может быть место внутри коммуникационного шкафа, где размещаются коммутационные элементы.

    Если речь идет о ведомственных АТС от 200 до 1000 номеров, то как правило это место в помещении АТС для размещения настенного или напольного коммутационного оборудования.

    В более крупных ведомственных или городских АТС для этого используются как правило отдельные помещения и даже целые этажи.

    Как правило существует абонентская (линейная) и станционная часть кросса. Станционная часть подключена к оборудованию, в абонентской разводятся кабельное хозяйство, которое идет к конечным пользователям (абонентам). Задачей кросса по сути и является объединение между собой этих частей, которое бы позволяло в одном месте управлять всеми подключениями и при необходимости реконфигурировать их без перекладки кабелей.

    С развитием технологий кроме обычных телефонных кроссов появились также:

    • кроссы ЛВС, как правило выполнены на патч-панелях 5-й и выше категории;

    • кроссы для оптического кабеля используются для коммутации оптических линий связи, а также для оконечивания оптических кабельных систем и перехода от волокна идущего внутри кабеля (ломкого и незащищенного, то есть не пригодного для коммутации) к оконечным гибким оптическим патчкордам.

    • Сетевой коммутатор (жарг. свитч, свич от англ. switch — переключатель) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Коммутатор работает на канальном (втором) уровне сетевой модели OSI. Коммутаторы были разработаны с использованием мостовых технологий и часто рассматриваются как многопортовые мосты. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы(3 уровень OSI).

    • В отличие от концентратора (1 уровень OSI), который распространяет трафик от одного подключённого устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю (исключение составляет широковещательный трафик всем узлам сети и трафик для устройств, для которых неизвестен исходящий порт коммутатора). Это повышает производительностьи безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.

    • Далее в этой статье рассматриваются исключительно коммутаторы для технологии Ethernet.

    Волоконно-оптический кабель (также оптоволоконный или оптико-волоконный кабель) — кабель на основе волоконных световодов, предназначенный для передачи оптических сигналов в линиях связи, в виде фотонов (света), со скоростью меньшей скорости света из-за непрямолинейности движения.



    Волоконно-оптический кабель

    Конструкция кабеля определяется его назначением и местом прокладки: от самой простой (оболочка, пластиковые трубки с волокнами) до многослойной (например, подводный коммуникационный кабель), содержащей упрочняющие и защитные элементы.

    Волоконно-оптический кабель состоит из следующих элементов[1]:

    • несущий трос, пруток из стеклопластика или металла, покрытого полиэтиленовой оболочкой. Служит для центрирования трубок — модулей и придания жёсткости кабелю, зажимается под винт для закрепления кабеля в муфте/кроссе;

    • двухслойные стеклянные или пластиковые волокна, возможно, покрытые одним или двумя слоями лака. Слой лака предохраняет волокна от повреждений и служит для цветовой маркировки волокон (прозрачный или цветной);

    • пластиковые трубки, содержащие нити — световоды и заполненные гидрофобным гелем. Количество трубок варьируется от 1 и более, количество волокон в трубке — от 4 до 12, общее число волокон в кабеле — от 4 до 288 (часто 32, 48, 64)[источник не указан 769 дней]. Для сохранения габаритных размеров кабеля при малом числе волокон вместо трубок могут вкладываться чёрные заглушки;

    • оплетающая трубки плёнка, стянутая нитками и смоченная гидрофобным гелем. Обладает демпфирующими свойствами и предназначена для снижения трения внутри кабеля, дополнительной защиты от влаги, удержания гидрофобной жидкости в пространстве между модулями и др.;

    • слой из тонкой внутренней оболочки из полиэтилена, предназначенной для дополнительной защиты от влаги (может отсутствовать);

    • слой из кевларовых нитей или брони. Броня — прямоугольный пруток или круглые проволочки, выполненные из стали (импортный кабель), гвоздевого железа (отечественный кабель) или стеклопластика (такого же, как у центрального силового элемента). Кевлар отличается малым весом и имеет допустимое растягивающее усилие 6—9 кН. Назначение кевлара — выполнение роли тросика в местах, где недопустимо возникновение наводок, например, вдоль железнодорожных путей(контактный провод, напряжение до 27,5 кВ); восприятие ветровой нагрузки. Назначение брони — защита кабеля, уложенного в грунт без защиты в виде пластиковой трубы, кабельной канализации или др.;

    • слой, представляющий собой полиэтиленовую плёнку и некоторое количество гидрофобного геля (может отсутствовать). Предназначен для дополнительной защиты от влаги;

    • слой, представляющий собой толстую и мягкую оболочку из полиэтилена. Предназначен для защиты внутренних слоёв от воздействия окружающей среды.

    Информация о расцветке волокон в кабеле, их типе и расположении в трубках не стандартизована и указывается каждым производителем в паспорте кабеля.

    Оптико-волоконные кабели различают:

    • по материалу волокна:

    GOF-кабель (англ. glass optic fiber cable);

    POF-кабель (англ. plastic optic fiber cable);

    • по месту монтажа:

    для наружного монтажа (в грунт, на воздухе, под водой);

    для внутреннего монтажа (внутри дата-центров);

    • по условиям прокладки:

    для подвеса (кабель с кевларом или тросиком);

    • для подвеса на опорах ЛЭП (кабель с защитой от молний);

    для укладки в грунт (кабель с бронёй из железных проволочек);

    для прокладки в кабельной канализации (кабель с бронёй из гофрированного металла);

    для прокладки под водой (многослойный кабель).

    Рабочая станция 

    Рабочая станция – это компьютер, который включен в состав локальной сети. Рабочая станция в технической документации в России обозначается как «автоматизированное рабочее место» (оно же АРМ – термин переняли из документной базы СССР).



    Рабочее место может включать в себя просто терминал доступа сотрудника к рабочему столу (бездисковые рабочие станции), или полноценное рабочее место с необходимым набором дополнительного оборудования (принтеров, сканеров, копиров и других устройств для ввода/вывода).

    В любом случае, рабочая станция – это конечная точка взаимодействия специалиста с необходимыми инструментами на базе компьютерной техники. Рабочие станции предназначены для выполнения конечных задач и взаимодействия с оператором.

    Сервер – удаленный компьютер, задача которого в том, чтобы выдавать запросы для подключенных к нему конечных клиентов (будь то рабочие станции, терминалы доступа, другие серверы).

    Под сервером могут понимать специальную программу, которая отвечает на запросы других программ-клиентов в локальной или глобальной сети. В этом случае в качестве сервера может выступать одно из рабочих мест, назначение которого – обслуживание запросов других клиентов сети.

    Или под сервером понимают специальный программно-аппаратный комплекс, состоящий из нескольких мощных компьютеров особой конфигурации, который предназначен исключительно для обработки запросов. То есть это не только специально настроенная программа на одном из рабочих мест в сети, а специальный производительный компьютер или целая их сеть, которые заняты только тем, что отвечают на запросы. Для таких платформ разрабатываются специальные аппаратные конфигурации, которые легко сопрягаются между собой, образуя супер-компьютер (кластер).



    Типовые серверы предназначены для:

    • обработки и пересылки почты в сети,

    • обработки запросов к базам данных,

    • обеспечения доступа к веб-ресурсам,

    • перенаправления или распределения трафика в сети (прокси-серверы),

    • хранения и передачи файлов в сети,

    • обеспечения взаимодействия игровых клиентов.

    Возможны и другие конфигурации.

    Чем сервер отличается от компьютера (рабочей станции)?

    Главное свойство сервера – выдача автоматических ответов на запросы подключенных клиентов. А рабочая станция предназначена для работы только с конечным пользователем.

    Наша компания предлагает готовые решения рабочих станций, серверное оборудование и программное обеспечение как для рабочих мест, так и для серверов.

    IP-адрес (от англ. Internet Protocol) - это уникальный числовой идентификатор устройства в компьютерной сети, работающий по протоколу TCP/IP.

    В сети Интернет требуется глобальная уникальность адреса; в случае работы в локальной сети требуется уникальность адреса в пределах сети. В версии протокола IPv4IP-адрес имеет длину 4 байта, а в версии протокола IPv6 — 16 байт.

    В 4-й версии IP-адрес представляет собой 32-битное число. Как правило, адрес записывается в виде четырёх десятичных чисел значением от 0 до 255 (эквиваленты четырём восьмибитным числам), разделённых точками, например, 192.168.0.3.

    Основная статья: IPv6

    В 6-й версии IP-адрес является 128-битным. Как правило, адрес записывается в виде восьми четырёхзначных шестнадцатеричных чисел (эквивалентны восьми 16-битным числам), разделённых двоеточиями, например, 2001:0db8:85a3:0000:0000:8a2e:0370:7334. Ведущие нули допускается в записи опускать. Нулевые группы, идущие подряд, могут быть опущены, вместо них ставится двойное двоеточие (fe80:0:0:0:0:0:0:1 можно записать как fe80::1). Более одного такого пропуска в адресе не допускается.

    IP-адрес состоит из двух частей: номера сети и номера узла. В случае изолированной сети её адрес может быть выбран администратором из специально зарезервированных для таких сетей блоков адресов (10.0.0.0/8, 172.16.0.0/12 или 192.168.0.0/16). Для выхода в глобальную сеть необходимо, чтобы был IP из другого блока адресов, либо в локальной сети должен быть сервер, подменяющий внутренний IP-адрес (серый) на внешний IP-адрес (белый), например: proxy serverNAT. Если же сеть должна работать как составная часть Интернета, то адрес сети выдаётся провайдером либо региональным интернет-регистратором (Regional Internet Registry, RIR). Согласно данным на сайте IANA,[1] существует пять RIR: ARIN, обслуживающий Северную Америку, а также БагамыПуэрто-Рико и ЯмайкуAPNIC, обслуживающий страны ЮжнойВосточной и Юго-Восточной Азии, а также Австралии и ОкеанииAfriNIC, обслуживающий страны Африки и Индийского океана; LACNIC, обслуживающий страны Южной Америки и бассейна Карибского моря; и RIPE NCC, обслуживающий ЕвропуЦентральную АзиюБлижний Восток. Региональные регистраторы получают номера автономных систем и большие блоки адресов у IANA, а затем выдают номера автономных систем и блоки адресов меньшего размера локальным интернет-регистраторам (Local Internet Registries, LIR), обычно являющимся крупными провайдерами.

    Номер узла в протоколе IP назначается независимо от локального адреса узла. Маршрутизатор по определению входит сразу в несколько сетей. Поэтому каждый порт маршрутизатора имеет собственный IP-адрес. Конечный узел также может входить в несколько IP-сетей. В этом случае компьютер должен иметь несколько IP-адресов, по числу сетевых связей. Таким образом, IP-адрес характеризует не отдельный компьютер или маршрутизатор, а одно сетевое соединение.

    Есть два способа определения того, сколько бит отводится на маску подсети, а сколько — на IP-адрес.

    Изначально использовалась классовая адресация (INET), но со второй половины 90-х годов XX века она была вытеснена бесклассовой адресацией (CIDR), при которой количество адресов в сети определяется маской подсети.

    Сравнение


    Иногда встречается запись IP-адресов вида «192.168.5.0/24». Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. Для приведённого примера маска подсети будет иметь двоичный вид 11111111 11111111 11111111 00000000 или то же самое в маршрутизаторе десятичном виде: «255.255.255.0». 24 разряда IP-адреса отводятся под номер сети, а остальные 8 разрядов полного адреса — под адреса хостов этой сети, адрес этой сети и широковещательный адрес этой сети. Итого, 192.168.5.0/24 означает диапазон адресов хостов от 192.168.5.1 до 192.168.5.254, а также 192.168.5.0 — адрес сети и 192.168.5.255 — широковещательный адрес сети. Для вычисления адреса сети и широковещательного адреса сети используются формулы:

    • адрес сети = IP.любого_компьютера_этой_сети AND MASK (адрес сети позволяет определить, что компьютеры в одной сети)

    • широковещательный адрес сети = IP.любого_компьютера_этой_сети OR NOT(MASK) (широковещательный адрес сети воспринимается всеми компьютерами сети как дополнительный свой адрес, то есть пакет на этот адрес получат все хосты сети как адресованные лично им. Если на сетевой интерфейс хоста, который не является машрутизатором пакетов, попадёт пакет, адресованный не ему, то он будет отброшен).

    В некоторых системах адрес сети и широковещательный могут быть поменяны местами (не проверено).

    Запись IP-адресов с указанием через слэш маски подсети переменной длины также называют CIDR в противоположность обычной записи без указания маски, в операционных системах типа UNIX также именуемой INET.

    Соединение электрических проводов в распределительной коробке




    Электричество так привычно в современной жизни, что представить себе, как без него обойтись, практически невозможно. Если постирать или перемолоть мясо можно вручную, то телевизор, компьютер, мобильный телефон на углях, как утюг, не заработают. Электричество в каждом доме – это уже необходимость, и подается оно туда по проводам от внешних сетей. На входе в каждую квартиру или индивидуальный дом стоит распределительная коробка, от которой отходят провода внутренней электрической проводки.

    Необходимость распределительной коробки


    В первую очередь, распределительные коробки обеспечивают пожарную безопасность. Наибольшую опасность с точки зрения возникновения пожара представляют собой места соединения проводов. Из-за большого сопротивления в местах недостаточного плотного контакта возникает нагрев проводки в этом месте, который может привести к пожару при контакте с горючими материалами стены.

    Распределительная коробка исключает опасность возгорания, изолируя место соединения проводов.

    Кроме того, распределительная коробка играет функциональную роль. Доступ к спрятанным в ней соединениям проводов значительно проще и удобнее, чем, если бы соединение каждого провода пряталось в стене в глубоких штробах, которые потребовалось вскрывать, нарушая отделку стен, при ремонте проводки.

    И даже наружная распредкоробка выглядит эстетично по сравнению с торчащим из стены пучком кабелей.



    Специальные Правила устройства Электроустановок (ПЭУ) регламентируют правильное соединение электрических проводников сваркой, пайкой, опрессовкой или с помощью винтовых и болтовых зажимов.

    Правилами не оговаривается самый распространенный способ соединения – скрутка. Хотя правильно выполненная скрутка надежней плохого соединения пайкой. Выбор способа соединения зависит от нескольких факторов:

    • соединяемые материалы. Это может быть алюминий, медь или их комбинация;

    • количество проводов в соединении. Можно соединять не только два, но и три, четыре и больше проводов;

    • нагрузка в цепи;

    • сечение и количество жил.

    Соединение скруткой


    Чтобы выполнить такое соединение, нужно зачистить концы жил, тщательно скрутить их пассатижами и заизолировать место скрутки. Очень просто и без материальных затрат. Но такое соединение со временем ослабевает за счет остаточной упругой деформации материала, а, значит, увеличивается сопротивление в соединении и контакт начинает греться вплоть до разрушения и возгорания. Поэтому ни в коем случае нельзя прокладывать проводку со скруткой по горючим основаниям, например, в деревянном доме. И еще один запрет – слабая защита от влаги не позволяет такое соединение выполнять в помещениях с повышенной влажностью.

    Таким способом категорически запрещено соединять разнородные материалы, многожильные кабели с одножильными и при токе больше 3 А.

    Чтобы скрутка была качественной, с проводов нужно снять изоляцию до 80 мм длины проводов, сложить их перпендикулярно друг другу, если их два, и параллельно, если – три и больше, и плотно скрутить. Оставшиеся концы жил нужно удалить кусачками винтовым движением, как бы вмазывая материал проводов один в другой. Общая длина готовой скрутки должна быть не менее десяти, а лучше пятнадцати диаметров жил.

    Если для изоляции используются специальные колпачки или термоусадочная трубка (кембрик), то они надеваются на провод до скручивания. Термоусадочную трубку рекомендуют надевать дважды, а изоляционную ленту укладывать не менее, чем в три слоя. Какой бы ни выбирался изоляционный материал, он должен захватывать и собственную изоляцию проводов для защиты от влаги и его сползания .

    Соединение пайкой или сваркой


    Этот способ является лучшим по сочетанию технологичности и надежности, но требует некоторых навыков для выполнения качественного соединения.

    Перед пайкой провода нужно тщательно очистить от изоляции и окислов, облудить при необходимости и скрутить не так плотно, как при простой скрутке, покрыть флюсом и опаять. Пайкой можно соединять и медные и алюминиевые провода с подходящим флюсом и припоем. Нельзя использовать активный кислотный флюс, так как он разрушает соединение, оставаясь на оголенных проводах. Изолируется место соединения обычным способом.

    При неоспоримых достоинствах у этого метода есть и достаточно существенные недостатки:

    • необходимость навыков в работе, трудоемкость процесса;

    • использование специального инструмента;

    • неразъемное соединение, то есть для ремонта его нужно полностью удалять;

    • увеличение со временем сопротивления в соединении, что ухудшает электропроводность и увеличивает потери напряжения в сети.

    Сварка — еще более надежный метод соединения, чем пайка, но при этом нужен сварочный аппарат с индивидуальными средствами защиты и навыки сварочных работ, что в быту встречается значительно реже. Разве что понадобится самостоятельно выполнить электромонтажные работы в загородном доме, тогда приобретение сварочного аппарата инверторного типа будет экономически оправдано. Сварочные инверторы малогабаритны, обладают широким диапазоном регулирования сварочного тока, при малом энергопотреблении обеспечивают устойчивое горение дуги. Для сварки медных проводов используются угольно-медные электроды или угольные стержни от обычных пальчиковых батареек.

    Подготовка к сварке отличается только плотностью скрутки и тем, что свободные концы двух жил, даже если их больше в соединении, распрямляются и прижимаются параллельно друг к другу для облегчения формирования шарика расплава. Потом скрутку помещают в сварочный зажим (обычные старые пассатижи) и угольным электродом сваривают концы провода до основной скрутки в течение двух-трех секунд, чтобы не оплавилась изоляция. После остывания место сварки изолируют обычным способом.

    Часто возникает искушение не дожидаться естественного остывания, а воспользоваться холодной водой, чтобы ускорить процесс монтажа проводки. Но холодная вода вызывает появление микротрещин в материале, что, естественно, влияет на качество соединения.

    Опрессовка


    При этом методе соединения электрических проводов используются специальные трубчатые гильзы или наконечники. Промышленность выпускает гильзы для проводов сечением от 2,5 до 240 мм², и очень важно правильно подобрать соединитель для конкретного соединения. Для выполнения работ необходим специальный инструмент. Это может быть обжимочный пресс или клещи, механические, электрические или гидравлические.

    Выбрав подходящую гильзу и отрегулировав инструмент, удаляют с проводов изоляцию, концы зачищают и наносят на них кварцево-вазелиновую пасту, надевают соединитель и обжимают. Если инструмент простой, то нужно выполнить несколько обжатий на некотором расстоянии друг от друга. Используя хороший инструмент, можно обжать гильзу за один раз. В конце выполняется обычная изоляция места стыка.

    Соединяемые провода могут вставляться в соединитель с противоположных сторон так, чтобы их стык находился примерно посредине гильзы. Бывает удобно вставлять оба провода с одной стороны, при этом суммарная площадь сечения всех проводов должна быть меньше сечения гильзы. Качественный монтаж и надежная изоляция – это положительные стороны использования опрессовки. Но есть и отрицательные моменты:

    • гильза деформируется при опрессовке и повторное ее использование невозможно;

    • необходимость специального инструмента для обжатия гильзы, подгонки ее по длине и снятия изоляции с провода;

    • для опрессовки соединения медного и алюминиевого провода нужна достаточно редкая специальная гильза;

    • достаточно большие затраты времени на монтаж электропроводки.

    Соединительные изолирующие зажимы (СИЗ)


    Зажим представляет собой колпачок с квадратной стальной проволокой, свернутой в спиральный конус. Для алюминиевых проводов конус заполняется специальной пастой, предотвращающей окисление оголенных концов. Правильно подобрать размер СИЗа в соответствии с площадью сечения и количеством соединяемых проводников позволит информация на упаковке с зажимами.

    Чтобы соединить провода, их концы зачищают на расстояние немного меньшее глубины колпачка, складывают вместе, слегка скручивают и сверху наворачивают колпачок. Зачищать оголенные провода от окислов не нужно, так как эту работу выполняют грани пружинки, а ее витки плотно прижимают провода друг к другу.

    Применение таких соединителей технологично, они не только соединяют провода, но и изолируют место соединения, правда, не обеспечивают той контактной площади, как при скручивании с пайкой. Яркая расцветка колпачков помогает при монтаже отметить ноль, фазу и заземление, если провода не имеют цветной маркировки. К недостаткам можно отнести:

    • постепенное ослабевание пружинки со временем, а, следовательно, увеличение сопротивления контакта и потерь напряжения в сети;

    • ограничения по количеству соединяемых проводов, можно соединять два с сечением 4 мм² или четыре с площадью сечения 1,5 мм²;

    • невозможность смешанных соединений.

    ВЫВОД

    ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    СПИСОК ЛИТЕРАТУРЫ




    1. Бройдо, В. Вычислительные системы, сети и телекоммуникации / В. Бройдо, О.П. Ильина. - СПб.: Питер, 2011. - 560 c.

    2. Бройдо, В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов / В.Л. Бройдо, О.П. Ильина. - СПб.: Питер, 2011. - 560 c.

    3. Бройдо, В.Л. Вычислительные системы, сети и телекоммуникации / В.Л. Бройдо. - СПб.: Питер, 2003. - 688 c.

    4. Гаврилов, Л.П. Мобильные телекоммуникации в электронной коммерции и бизнесе / Л.П. Гаврилов. - М.: Финансы и статистика, 2006. - 336 c.

    5. Герасимова, С.А. Культурология и теория телекоммуникации (для бакалавров) / С.А. Герасимова. - М.: КноРус, 2016. - 112 c.

    6. Гребешков, А.Ю. Вычислительная техника, сети и телекоммуникации.: Учебное пособие для вузов. / А.Ю. Гребешков. - М.: РиС, 2015. - 190 c.

    7. Гребешков, А.Ю. Вычислительная техника, сети и телекоммуникации.: Учебное пособие для вузов. / А.Ю. Гребешков. - М.: ГЛТ , 2016. - 190 c.



    написать администратору сайта