реферат. Реферат мгк, генетический скрининг, пренатальная диагностика. Генотерапия
Скачать 35.87 Kb.
|
Министерство здравоохранения Республики Казахстан Карагандинский медико-технический колледж Реферат «МГК, генетический скрининг, пренатальная диагностика. Генотерапия» Составил студент группы ДТ-301 Талгат Ермурат Проверил Терещенко Станислав Караганда 2020 Медико-генетическое консультирование Медико-генетическое консультирование является наиболее распространенным видом профилактики наследственных болезней. Суть его заключается в прогнозировании рождения ребёнка с наследственной патологией, объяснении вероятности этого события консультирующимся и помощи семье в принятии решения о дальнейшем деторождении. Медико-генетическое консультирование как способ профилактики врождённой или наследственной патологии особенно эффективен до зачатия или на самых ранних сроках беременности Включает 3 этапа: Уточнение диагноза с использованием специальных генетических методов: генеалогическое обследование и составление родословной, биохимико-генетические методы, позволяющие выявить генетически обусловленные изменения обмена веществ, диагностика гетерозиготного носительства рецессивных аллелей, пренатальная диагностика (УЗИ, биохимический скрининг маркерных белков в сыворотке беременной, амниоцентез — забор околоплодной жидкости для кариотипирования плода). Определение прогноза потомства, который основывается на данных о типе и варианте наследования патологического состояния, результата пренатальной диагностики. Формулирование заключения и объяснение заинтересованным лицам в доступной форме смысла генетического риска В идеальном варианте медико-генетическое консультирование должны пройти все семьи, планирующие иметь ребёнка (т.н. проспективное консультирование). Прямыми показаниями для направления к специалисту-генетику являются: установленная или подозреваемая наследственная болезнь в семье; кровнородственные браки; воздействие возможных мутагенов или тератогенов до или в течение первых трёх месяцев беременности; значимые отклонения результатов биохимического скрининга маркерных сывороточных белков у беременной; выявление у плода маркёров хромосомных болезней и врождённых пороков развития при ультразвуковом исследовании Генетический скрининг Введение По мере углубления наших представлений о природе наследственных заболеваний, расширяются возможности практического здравоохранения. Обоснована программа обязательного обследования всех членов популяции с повышенным риском для выявления дефекта в случае, если возможно лечение или профилактические меры. Рекомендовано проводить скрининг носительства определенных генетических дефектов, который позволит осуществлять генетическое консультирование или внутриутробную диагностику до рождения больного ребенка. Эти программы отличаются от обычного ретроспективного генетического консультирования, где пациенты или семьи обращаются за советом к консультанту-генетику уже тогда, когда один из членов семьи имеет генетический дефект. Скрининг фенилкетонурии: предотвращение умственной отсталости. Фенилкетонурия (26160)-одна из наиболее распространенных врожденных ошибок метаболизма, которая в популяциях европейского происхождения встречается с частотой около 1/10000 рождений. Этот дефект наследуется как аутосомнорецессивный признак и обусловлен мутацией, затрагивающей фермент фенилаланингидроксилазу (она лишается способности метаболизировать фенилаланин). Накапливающиеся в результате этого метаболиты повреждают развивающийся мозг, что приводит к выраженной умственной отсталости. Около 1% постоянных обитателей учреждений для умственно отсталых лиц страдают фенилкетонурией. Если это состояние диагностировано вскоре после рождения, диета, ограничивающая потребление фенилаланина, может предотвратить умственную отсталость. Чтобы выявить это, необходимо провести несложный анализ крови, взятой из пятки младенца с помощью укола. В большинстве развитых стран скрининг фенилкетонурии обязателен для всех новорожденных. Положительный результат анализа не обязательно означает наличие у ребенка фенилкетонурии, поскольку существуют варианты гиперфенилаланинемии, которые могут не вызывать умственной отсталости. Такой ребенок должен находиться под наблюдением опытных врачейбиохимиков и педиатров. Они назначат ему лечение только в том случае, если оно действительно необходимо, поскольку ограниченная по фенилаланину диета сама по себе может принести вред. Кроме того, классическую фенилкетонурию с помощью соответствующих тестов следует отличать от дефектов, которые вызывают злокачественную гиперфенилаланинемию, связанную с недостаточностью дигидроптеридинредуктазы или ошибками в синтезе кофактора биоптерина. При этих дефектах ограниченная по фенилаланину диета не оказывает влияния на клинические проявления болезни. Успех программы по фенилкетонурии породил новые проблемы, связанные с беременностью женщин, которые в детстве успешно лечились от фенилкетонурии и впоследствии не нуждались в диете. У таких беременных уровень фенилаланина повышен, что оказывает повреждающее действие на развивающийся плод. При этом возможны выкидыши, микроцефалия с умственной отсталостью, пороки сердца и задержки внутриутробного развития. Восстановление ограниченной по фенилаланину диеты до начала беременности должно предотвратить эти аномалии. Учитывая сложность выявления всех матерей, имевших фенилкетонурию, и случаи незапланированных беременностей, трудно определить всех женщин, которым во время беременности следует возобновить ограниченную по фенилаланину диету. По крови, взятой для анализа на фенилкетонурию, можно также проверить наличие многих других врожденных ошибок метаболизма, которые поддаются лечению. Все эти состояния - болезнь кленового сиропа (24860), гомоцистинурия (23620) и галактоземия (23040) - распространены намного меньше, чем фенилкетонурия. В настоящее время усилия ученых направлены на разработку четких тестов, позволяющих выявить эти состояния. Для того чтобы оправдать высокую стоимость скрининговых программ для врожденных ошибок метаболизма, ее обычно сравнивают с затратами на уход за больными детьми. Однако при этом совершенно не учитывается гуманистический аспект этой проблемы. С нашей точки зрения, неправомерно при организации скрининговых программ анализировать только расходы. Скрининг матерей с повышенным риском аномалии хромосом. Ввиду того, что многие дефекты хромосом зависят от возраста матери, желательно у пожилых матерей проводить поиск таких аномалий. В настоящее время всем беременным женщинам в возрасте свыше 35 лет советуют делать амниоцентез, так как риск трисомии 21 для их детей очень высок. Из-за небольшого размера семьи в США большинство случаев трисомии 21 приходится на более молодых женщин, и воздействие амниоцентеза на популяцию меньше идеального. И все-таки эту процедуру очень рекомендуется проводить беременным женщинам старше 35 лет. Скрининг аутосомно-рецессивных признаков. В тех случаях, когда существует возможность выявить гетерозиготность по аутосомнорецессивным болезням, это делать необходимо. Скрининг носителей позволил бы определить пары, которые имеют 25%-ную вероятность рождения пораженных детей. Лица, гетерозиготность которых не вызывает сомнений, должны быть информированы относительно генетического и медицинского риска заболевания и альтернатив, связанных с рождением детей. Они должны знать, что им не стоит: 1) вступать в брак с другим носителем; 2) иметь детей при супружестве с другим носителем и 3) в случае такой беременности необходим амниоцентез для выявления тех состояний, которые можно обнаружить с помощью пренатальной диагностики. Вступление гетерозиготы в брак с человеком, который не является носителем, конечно, не имеет неблагоприятных медицинских или генетических последствий. Однако легко понять, что альтернатива отказа от брака с человеком, оказавшимся носителем идентичного генетического признака, с целью предотвращения рождения дефектных детей не очень популярна. Программы скрининга наиболее успешно проводились в хорошо информированных популяциях в отношении признаков, доступных для внутриутробной диагностики. Состояние носительства для болезни Тея-Сакса (27280) встречается в популяции евреев ашкенази с частотой около 4%. Характерную для дефекта недостаточность гексозаминидазы можно обнаружить в сыворотке носителей-гетерозигот. Плоды с болезнью Тея-Сакса легко выявляются с помощью определения активности фермента в клетках, полученных при амниоцентезе и культивированных in vitro. Скрининг болезни Тея-Сакса проводился во многих столичных городах Соединенных Штатов Америки, в результате были идентифицированы и абортированы многие пораженные плоды. Семьи, в которых имелись случаи болезни Тея-Сакса, пройдя через процедуру внутриутробной диагностики, могли теперь иметь здоровых детей. Без амниоцентеза такие пары практиковали бы контрацепцию. Осуществление программы потребовало довольно высокого уровня гласности для того, чтобы привлечь к обследованию людей с повышенным риском. Даже при относительно высокой частоте гетерозигот, составляющей 4%, только 1 из 2000 детей евреев ашкенази будет поражен заболеванием (0,04 0,04 0,25) и только рожденный в браке, где оба родителя имеют предков ашкенази. Большинство акушеров не знакомы с этим заболеванием и поэтому не проверяют своих пациентов еврейского происхождения на этот признак. Одна община отказалась проводить скрининг на том основании, что частота заболевания не оправдывает возможной моральной травмы у тех лиц, которые окажутся носителями мутаций. Однако в целом при соответствующем образовании и воспитании реакция общества на программы была положительной. До недавних пор скриниг серповидно-клеточной аномалии эритроцитов был менее успешным. Негритянские популяции, среди которых этот признак распространен, характеризуются, как правило, меньшей образованностью, поэтому не всегда удавалось разъяснить цель обследования. Люди с повышенным риском часто не понимали разницы между безвредной разновидностью серповидных клеток и анемией. Носители признака серповидных клеток стали в некоторых случаях подвергаться дискриминации в отношении рода занятий, страхования жизни и даже в выборе супруга. Эти последствия иллюстрируют важность широкого информирования общественности как предварительного условия для организации программы скрининга. Хотя наличие серповидных клеток можно легко проверить, для серповидноклеточной анемии до недавних пор отсутствовали методы внутриутробной диагностики. В настоящее время такую диагностику можно осуществить с помощью эндоскопии плода и еще легче с помощью прямого исследования ДНК. Это заболевание, однако, менее серьезно, чем болезнь Тея-Сакса или тяжелая талассемия (см. ниже). В клиническом выражении оно очень разнообразно и некоторые пациенты чувствуют себя неплохо. Поэтому для серпо-видноклеточной анемии внутриутробная диагностика предлагается реже, чем для более тяжелых генетических заболеваний. Скрининг -талассемии для выявления супружеских пар, нуждающихся в пренатальной диагностике, очень успешно прошел в нескольких средиземноморских районах - на Кипре, в Ферраре (Италия), в Сардинии и Греции. Частота этого заболевания резко упала с конца семидесятых годов после введения процедуры эндоскопии плода и анализа полученной при этом крови. Скрининг -талассемии выполнить сложнее, чем скрининг серповидноклеточной аномалии эритроцитов, поскольку для нее отсутствует единый анализ. Тем не менее результаты, достигнутые в средиземноморских странах, показывают, что скрининг и пренатальную диагностику талассемии осуществить можно, и это оказывает благотворное влияние на здоровье населения. Многие исследователи отстаивали программу скрининга серповидноклеточной анемии при рождении для выявления пораженных детей и определения супружеских пар с повышенным риском рождения детей с этой анемией. Целесообразность таких программ, на наш взгляд, сомнительна, поскольку для данного заболевания нет специфической терапии. Консультирования гетерозигот в таких случаях обычно не проводится. Последующие наблюдения и исследования встречаются редко. Во многих странах достаточно упрочился скрининг врожденного гипотиреоза среди новорожденных. Он основан на анализе крови на тироксин (Т4). В случае повышения уровня Т4 с помощью радиоиммунологического метода проводят измерение уровня тиреотропного гормона. Лечение является высоко эффективным и предотвращает развитие умственной отсталости и других признаков и симптомов гипотиреоза. Частота врожденного гипотиреоза составляет около 1/4000, он встречается в два-три раза чаще фенилкетонурии. Этиология врожденного гипотиреоза обычно не связана с наследованием по менделевским законам и часто не связана с генетическими факторами. В настоящее время для рутинного скрининга среди всех новорожденных можно определенно рекомендовать фенил-кетонурию и врожденный гипотиреоз. Скрининг дефектов нервной трубки. Дефекты нервной трубки имеют мультифакториальную этиологию. Генетические факторы, по-видимому, тоже играют какую-то роль, но специфическая их природа неизвестна. Частота дефектов варьирует от 1/200 в юго-восточной Англии до 1/1000-1/1500 в Германии. Более низкие цифры характерны и для Соединенных Штатов Америки. В последние годы частота этих заболеваний снижалась. Скрининг соответствующих дефектов среди населения можно провести с помощью определения уровня альфа-фетопротеина (АФП) в сыворотке крови матери на 16-18-й неделе беременности. Большинство матерей, вынашивающих плод с дефектом нервной трубки, будут демонстрировать сильное повышение уровня АФП. Повышение уровня, однако, может быть вызвано и другими заболеваниями плода, а также множественной беременностью, внутриутробной гибелью плода или недооценкой срока беременности. Значения для нормы и патологии перекрываются. Программы скрининга позволяют обнаруживать 80-90% открытых дефектов нервной трубки. Если уровень АФП повышен, проводятся повторные анализы и ультразвуковое обследование для того, чтобы исключить возможность двойни, подтвердить срок беременности и выявить признаки пороков развития нервной трубки. Если повышение уровня АФП в крови подтверждается, то проводят амниоцентез для определения уровня АФП в околоплодной жидкости. Такие скрининговые программы сложны для проведения и не совсем бесспорны, так как большинство женщин с повышенным уровнем АФП рожают нормальных детей, и оказывается, что им не нужно было подвергаться повторным анализам и волноваться. Чем ниже частота пороков развития нервной трубки в данной популяции, тем выше будет число «ложно-положительных» результатов анализа АФП без дефектов нервной трубки. Скрининг уровня АФП полезен в тех популяциях, в которых частота пороков развития нервной трубки выше 1/1000, имеются хорошие лаборатории и опытный персонал, что позволяет проводить широкое консультирование и необходимые исследования с помощью ультразвука. Необходимы ли в будущем обширные исследования всех новорожденных для выявления полиморфизма? До сих пор речь шла о скрининге определенных наследственных заболеваний. Однако, как отмечалось при обсуждении генетических основ широко распространенных заболеваний, генетического полиморфизма, а также вопросов фармакогенетики и экогенетики, некоторые «нормальные» гены, продукты которых можно обнаружить, способны влиять на чувствительность к мультифакториальным заболеваниям во взаимодействии с определенными условиями среды. Встает вопрос, не могло бы в будущем оказаться полезным обследовать каждого новорожденного для выявления полиморфизма с тем, чтобы дать индивидуальный прогноз риска заболеваний. В зависимости от конкретных результатов такого обследования можно было бы рекомендовать превентивные меры типа отказа от определенных видов пищи, курения, алкоголя и наркотиков или устранения от связанных с профессиональной деятельностью воздействий определенных условий среды, таких, как пыль или химические вещества. Таким образом удалось бы уменьшить риск определенных заболеваний, к проявлению которых более подвержены определенные генотипы. Однако на эту проблему можно посмотреть и с другой стороны. Как реагировало бы общество на сведения о том, что некоторые из его членов имеют неплохой шанс достигнуть пожилого возраста в достаточно добром здравии, другим для увеличения продолжительности жизни необходима защита от некоторых распространенных влияний внешней среды, а жизнь третьих относительно коротка при самых лучших условиях? Кто должен иметь доступ к такой информации? Как можно обеспечить секретность при хранении сведений в компьютере? Одержит ли верх общечеловеческая солидарность над этим видом генетического неравенства или группы с разными генотипами вступят в борьбу? Как повлияет на судьбу человека и его личное счастье детальное знание о присущей ему склонности к какому-то заболеванию? Это лишь некоторые из этических проблем, возникающих в связи с развитием генетики человека и, в частности, перспективами генетического скрининга. По-видимому, человечество нравственно еще не готово к решению таких проблем. Пренатальная диагностикаВведение В настоящее время медицина шагнула далеко вперед и позволяет оценить состояние здоровья ребенка еще на этапе его внутриутробного развития. Такая оценка имеет огромное значение, так как процент внутриутробных пороков развития плода и наследственных заболеваний не снижается. Пренатальная диагностика плода позволяет своевременно выявить практически все отклонения от нормы и принять необходимые меры. Дородовая или пренатальная диагностика – это совокупность исследований плода, которая позволяет выявить или опровергнуть внутриутробные аномалии развития, хромосомные и генные заболевания будущего ребенка. Пренатальная диагностика является самой молодой, но успешно развивающейся отраслью репродуктивной медицины. После получения результатов исследования проводится медико-генетическое консультирование супругов и решается вопросы: имеется ли смысл пролонгировать беременность, возможно ли лечение ребенка с выявленной патологией после рождения или внутриутробно и как предупредить отклонения от нормального развития плода в следующей беременности. Методы пренатальной диагностики Все методы пренатальной диагностики подразделяются на 2 группы. К первой относится малоинвазивная или неинвазивная пренатальная диагностика (пренатальный скрининг), включающая: ультразвуковое исследование; исследование родословной родителей; проведение генетического исследования супругов; УЗИ с доплерометрией (оценка кровотока в системе мать-плацента плод) по показаниям; кардиотокография (проводится с 32 недель, по показаниям с 28 недель); кровь на содержание сывороточных маркеров («на уродства плода»). Ко второй группе относятся инвазивные методы, которые подразумевают хирургическое проникновение в полость матки: биопсия хориона; плацентоцентез; кордоцентез; амниоцентез; биопсия тканей плода. Неинвазивная пренатальная диагностика Пренатальный скрининг (отсев или сортировка) проводится в обязательном порядке среди всех беременных и включает 2 главных исследования, которые позволяют выявить грубые пороки развития и маркеры патологии плода. Трансабдоминальное ультразвуковое исследование Ультразвуковое исследование Ультразвуковое исследование является абсолютно безопасным методом и должно проводиться во время беременности как минимум 3 раза и в определенные сроки: в 10 – 14 недель, в 22 – 24 недели и в 32 – 34 недели. Отклонение от рекомендованных сроков значительно снижает процент выявления патологии. Так, при первом УЗИ определенные признаки, свидетельствующие о грубой патологии, до 10-ой недели еще не появились, а после 14 недели уже исчезли. Но даже во время проведения второго УЗИ не всегда возможно выявить патологию и пороки развития (например, мелкие дефекты в перегородках сердца). Поэтому УЗИ обязательно (в любом случае) дополняется исследованием крови на маркеры плода. Методика проведения УЗИ: Трансабдоминальное исследование Проводится при помощи трансабдоминального датчика, который испускает ультразвуковые волны. Датчик водится по поверхности передней брюшной стенки, а волны, передаваемые им, отражаются от тканей будущего малыша и обрабатываются компьютером. После чего на мониторе формируется сонограмма – изображение, которое описывается врачом. Трансабдоминальное исследование лучше выполнять во втором – третьем триместрах. Трансвагинальное исследование Предпочтительно проводить в ранних сроках гестации. Вагинальный датчик, помещенный в презерватив, вводится во влагалище. Что позволяет выявить УЗИ: локализацию эмбриона (маточная или внематочная беременность); количество плодов; срок беременности в неделях; задержку развития плода; замершую беременность; пол ребенка; локализацию плаценты (предлежание, низкую плацентацию); состояние плаценты (инфаркт, кальцинаты, степень зрелости); количество амниотической жидкости (много- или маловодие); состояние пуповины, число сосудов в ней, узлу пуповины; тонус миометрия (гипертонус при угрозе прерывания или преждевременных родах); сердцебиение плода и его характер (брадикардию, тахикардию); нарушенный кровоток в плацентарных сосудах; аномалии развития плода (в первую очередь пороки нервной трубки, сердца и почек, патологию печени и кишечника, состояние конечностей и лицевого отдела черепа); определение ранних специфических симптомов синдрома Дауна (до 12 недель) – ширина шейно-воротникового пространства; положение (продольное, поперечное, косое) и предлежание (головное, тазовое, лицевое) плода. Кроме того, УЗИ позволяет диагностировать пузырный занос и анэмбрионию (отсутствие зародыша). Биохимический скрининг при беременности Биохимический скрининг Для проведения биохимического скрининга исследуется венозная кровь беременной, взятая в сроки 15 – 20 недель (оптимально в 16 – 18). Первый этап скрининга – «двойной тест» проводится в 9 – 13 недель, в эти сроки определяются плацентарные белки РРАР-Р и ХГЧ, в России проводится редко. Второй этап биохимического скрининга осуществляется во втором триместре беременности и определяется содержание альфа-фетопротеина (АФП), хорионического гонадотропина человека (ХГЧ) и свободного эстриола. В Российской Федерации исследуется лишь первые 2 маркера. Что позволяет выявить биохимический скрининг: синдром Дауна или трисомию; аномалии развития головного и спинного мозга (отсутствие головного мозга – анэнцефалию, грыжи головного и спинного мозга); хромосомные аномалии. К достоинствам биохимического скрининга можно отнести: высокая эффективность (выявление синдрома Дауна и пороков нервной трубки достигает 70%); ранняя диагностика патологии плода (15 – 22 недели), когда беременность еще можно прервать; отсутствие риска для плода. Из недостатков стоит отметить влияние различных факторов (многоплодная беременность, осложнения гестации, заболевания органов половой сферы женщины и другие) на достоверность результатов. Ввиду чего исследование биохимических маркеров может показать ложноотрицательный или ложноположительный результат. В подозрительных случаях отклонений от нормы биохимических маркеров назначается УЗИ более высокого уровня (в перинатальном центре или в областной/республиканской больнице) и проведение инвазивной дородовой диагностики. Инвазивная пренатальная диагностика Инвазивная пренатальная диагностика Дородовая инвазивная диагностика предоставляет 100% гарантию результата (выявление наследственных заболеваний, пороков развития и хромосомных аббераций), к тому же отличается быстрым получением результатов исследования. Также к плюсам инвазивной диагностики относится выявление патологии в малых сроках беременности (до 14 недель), а родителям предоставляется выбор: либо провести аборт, либо пролонгировать беременность. В случае сохранения эмбриона у врачей имеется достаточное количество времени для проведения коррекции пороков развития и лечения заболеваний плода внутриутробно. Показания к проведению инвазивной пренатальной диагностики Учитывая внедрение в полость матки при проведении инвазивных методов, они выполняются по строгим показаниям: возраст женщины (всем матерям старше 35 лет, так как с возрастом возрастает риск хромосомных аномалий плода); близкородственный брак; отягощенный анамнез: выкидыши на ранних сроках, рождение ребенка с хромосомной аномалией; хромосомная патология у одного из будущих родителей; необходимость определения отцовства; отклонения от нормы в крови сывороточных маркеров; воздействие на родителей мутагенных факторов (радиация, загрязненная экология, химические вещества, прием лекарств и прочее); в анамнезе рождение ребенка с врожденными пороками развития, отклонением в умственном развитии или наследственными обменными заболеваниями (фенилкетонурия); отклонения от нормальных показателей биохимических маркеров; ультразвуковые признаки аномалий плода. Методы инвазивной дородовой диагностики Забор клеток хориона Биопсия хориона Метод заключается в заборе и последующем исследовании клеток хориона. Хорион является зародышевой оболочкой, которая в будущем преобразуется в плаценту. Выполняется хорионбиопсия в 10 – 11-недельном сроке гестации двумя способами: Трансцервикальный способ Отсасывание небольшого количества ткани хориона шприцем через цервикальный катетер (установлен в цервикальном канале). Трансабдоминальный способ Проводится пункция матки через переднюю брюшную стенку шприцем с длинной иглой и производится забор хориональной ткани. Хорионбиопсию проводят под контролем ультразвукового исследования. Как правило, выполняется под местной анестезией. Результаты анализа готовы уже через 3 – 4 суток. К плюсам метода можно отнести его быстроту получения результатов, что дает возможность прервать беременность в безопасном сроке, выявление генных и хромосомных заболеваний, подтверждение отцовства и установление пола эмбриона. Плацентоцентез Метод аналогичен биопсии хориона, так же проводится забор клеток плаценты, но уже в более поздних сроках (второй триместр беременности). Тоже возможно получение клеток плаценты при вхождении в матку через цервикальный канал или посредством прокола передней брюшной стенки. В отличие от биопсии хориона культивирование клеток, полученных плацентоцентезом, может оказаться не показательным, что требует повтора процедуры. Проведение амниоцентеза значительно увеличивает риск возможных осложнений беременности из-за больших сроков и осуществляется только в условиях стационара с последующей (минимум на 3 дня) госпитализацией. Забор околоплодных вод Амниоцентез Метод заключается в заборе околоплодных вод путем прокола передней брюшной стенки, матки и амниона. Исследуется амниотическая жидкость на содержание гормонов, ферментов и аминокислот, от которых зависит рост плода. Вместе с амниотической жидкостью исследует слущенные клетки эпителия кожи плода и мочевыводящих путей. Исследование проводится на 16 – 18 неделе. Метод высокоинформативен и его эффективность достигает 99%. К недостаткам относится длительность проведения анализа (от 2 недель до 1,5 месяцев). Позволяет диагностировать генные и хромосомные абберации, определить зрелость легких плода, тяжесть резус-конфликта, некоторые аномалии развития плода и степень внутриутробной гипоксии. Кордоцентез Метод заключается в заборе крови плода из пуповины. Проводится на 18 – 24 неделе и позволяет выявить не только хромосомные и генные отклонения, но иммунологический и гормональный статус плода, определить биохимические показатели крови и прочее. Результаты анализа готовятся 4 – 5 суток. Кордоцентез по эффективности диагностики приближается к 100%. Биопсия тканей плода Проводится во втором триместре, под обязательным контролем УЗИ. Исследование показано для определения тяжелых наследственных кожных заболеваний у будущего ребенка – гиперкератоза и ихтиоза. При данных патологиях нарушен процесс ороговения кожных покровов, что ведет к утолщению поверхностного слоя, а кожа выглядит как рыбья чешуя. Забор материала производят так же, как и при получении хориональной или плацентарной ткани. Специальная длинная игла, вводимая в маточную полость, снабжена щипчиками, которыми захватывают и отделяют небольшой кусочек кожи. После материал отсылается на исследование, включающее три вида: Цитогенетическое исследование Позволяет определить количество хромосом, присутствие дополнительных или нехватку хромосом. Например, при синдроме Дауна выявляется дополнительная 21 хромосома, при синдроме Клайнфельтера в паре половых хромосом у плода мужского пола лишние Х или У-хромосомы, при синдроме Тернера – нехватка у девочки Х-хромосомы. Молекулярно-генетическое исследование Данный метод позволяет выявить внутрихромосомные дефекты, то есть генные мутации, в результате которых развиваются некоторые заболевания: гемофилия, фенилкетонурия, мышечная дистрофия Дюшенна и муковисцидоз. Биохимическое исследование Позволяет оценить зрелость легких и определить ее степень, диагностировать гипоксию плода (метаболический ацидоз), выявить резус-конфликт и его тяжесть. Недостатки инвазивной диагностики Несмотря на все плюсы и высокую информативность методов инвазивной дородовой диагностики, они имеют и ряд отрицательных моментов: угроза прерывания беременности (для профилактики назначаются спазмолитики до проведения процедуры и после нее, а также госпитализация, длительность которой зависит от применяемого метода); прерывание беременности; риск внутриутробного инфицирования плода; риск увеличения тяжести резус-конфликта; риск дородового излития вод при амниоцентезе; риск кровотечения у женщины; риск отслойки плаценты. Противопоказания к инвазивной диагностике Проведение инвазивной пренатальной диагностики не показано при следующих состояниях женщины: угроза прерывания беременности; кровотечение из половых путей; отслойка плаценты; выраженная спаечная болезнь малого таза; истмико-цервикальная Генотерапия Генотерапия — совокупность генноинженерных (биотехнологических) и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Это новая и бурно развивающаяся область, ориентированная на исправление дефектов, вызванных мутациями (изменениями) в структуре ДНК, или придания клеткам новых функций. Технологии генодиагностики и генотерапии базируются на мировых достижениях в расшифровке генома человека. Технологии генодиагностики включают разработку приемов точной локализации генов в геноме человека, ответственных за наследственные и соматические заболевания, а также методологии пренатальной и доклинической диагностики. Их важной составляющей является сравнительный анализ структуры генома в норме и патологии. Среди технологий генотерапии в настоящее время актуальны следующие: генотерапия соматических клеток, генотерапия репродуктивных (половых) клеток, генотерапия с использованием рибозимов и антисенс-ДНК. Генотерапия и генодиагностика - это перспективные технологии фундаментальной и прикладной биомедицины, направленные на лечение и профилактику наследственных (генетических) и приобретенных заболеваний, в том числе онкологических. В основе генотерапии, развивающейся на базе и в комплексе с генодиагностикой, лежит контролируемое изменение генетического материала клеток, приводящее к "исправлению" не только наследственных, но и, как стало ясно в последнее время, приобретенных генетических дефектов живого организма. Важнейшей технологической задачей генотерапии является разработка системы переноса или адресной доставки корректирующего генетического материала к клеткам-мишеням в организме больного, несущего в своем геноме дефектный ген. Предлагаемые технологии характеризуются точностью выявления гена, ответственного за генетический дефект и выбора системы переноса корректирующих генов, адресностью доставки в организм больного генетического материала, исправляющего генетический дефект. Технологии генодиагностики и генотерапии применяются в следующих отраслях: здравоохранение (развитие методологии генодиагностики и, в частности, системы пренатальной генодиагностики, будет способствовать своевременному выявлению генетических болезней и принятию соответствующих профилактических мер; генотерапия может быть использована для лечения болезней, связанных с мутациями генома (в том числе серповидно-клеточной анемии, эмфиземы, гемофилии и др.), инфекционных заболеваний; для коррекции дефектов центральной нервной системы и для стимуляции иммунного ответа организма при онкозаболеваниях); сельское хозяйство (технологии генодиагностики и генотерапии могут быть применены в ветеринарии и фитопатологии). Технологии генодиагностики и генотерапии являются инструментом реализации новой медико-биологической стратегии, конечная цель которой - избавление человечества от генетических и приобретенных болезней. Актуальность генотерапии для человека связана с тем, что более 5000 наследственных и приобретенных заболеваний связано с генетическими дефектами. Генотерапия может использоваться не только для лечения, но и для профилактики наследственных и приобретенных заболеваний. Таким образом, данная технология имеет большое социальное и народнохозяйственное значение. За рубежом генодиагностика и генотерапия рассматриваются как один из приоритетов развития биомедицины. К настоящему времени одобрено более 7 протоколов по генотерапии, в которых предложены способы лечения наследственных заболеваний. Такие протоколы разрабатываются в Китае, Франции, Великобритании, Италии, Нидерландах и ряде других стран. В США Национальным Комитетом по рекомбинантным ДНК (RAC) одобрено 18 клинических испытаний с использованием генотерапии, начато лечение одного из видов рака кожи - меланомы. В Российской Федерации также освоены основные технологии генотерапии - секвенирование, физическое и генетическое картирование генома человека и животных, осуществляется расшифровка молекулярных механизмов наследственных и онкозаболеваний, решаются проблемы генетической безопасности человека, сохранения его генофонда в условиях разрушающего антропогенного воздействия среды. Вместе с тем, для достижения зарубежного уровня в этой области России необходимо принять срочные меры по увеличению финансирования НИОКР и по усилению приборного обеспечения. Необходимым условием развития предлагаемых технологий в стране является организация международной кооперации. Генную терапию на современном этапе можно определить как лечение наследственных, мультифакториальных и наследственных (инфекционных) заболеваний. Путем введения в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генетической терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухаль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы первым моногенным наследственным заболеванием, в отношении которого были применены методы генетической терапии, оказался наследственный иммунодефицит, обусловленный мутацией в гене аденозиндезоминазы (АДА). 14 сентября 1990 года в Бетесде (США) 4-летней девочке, страдающей этим достаточно редким заболеванием (1:100000), были пересажены ее собственные лимфоциты, предварительно трансформированные в не организма (ex vivo) геном АДА (ген АДА + ген neo + ретровирусный вектор). Лечебный эффект наблюдается в течение нескольких месяцев, после чего процедура была повторена с интервалом 3-5 месяцев. За 3 года терапии проведены 23 внутривенные инъекции. Список источников https://ru.wikipedia.org/wiki/Медико-генетическое_консультирование https://www.bestreferat.ru/referat-284866.html https://webmedinfo.ru/prenatalnaja-diagnostika.html |