Главная страница

Приборы и аппараты пенного тушения. Регистрация


Скачать 313.48 Kb.
НазваниеРегистрация
Дата02.11.2022
Размер313.48 Kb.
Формат файлаdocx
Имя файлаПриборы и аппараты пенного тушения.docx
ТипДокументы
#766996



РЕГИСТРАЦИЯ
Приборы и аппараты пенного тушения: пеносмесители, дозирующие вставки, воздушно-пенные стволы, пеногенераторы, пеносливные устройства. Назначение, устройство, технические характеристики, эксплуатация и меры безопасности при работе
Kantaneha Kareva

Механизмы   Техника   Аппаратура   Безопасность

Приборы и аппараты пенного тушения: пеносмесители, дозирующие вставки, воздушно-пенные стволы, пеногенераторы, пеносливные устройства. Назначение, устройство, технические характеристики, эксплуатация и меры безопасности при работе.

Пеносмесители.

Пеносмесителипредназначены для получения водного раствора пенообразователя, применяемого для образования пены в генераторах пены средней кратности. Пеносмесители являются струйными насосами.

На пожарных насосах устанавливают пеносмесители ПС-5. Дозатор ПС-5 имеет 5 радиальных отверстий диаметрами 7,4; 11; 14,1; 18,2; 27,1 мм., рассчитанных на дозировку пенообразователя при работе соответственно 1, 2, 3, 4, 5 генераторов ГПС-600 или стволов СВП.






Рисунок 1. Пеносмеситель:

1 – всасывающий шланг, 2 – рабочая камера,

3 – корпус, 4 – диффузор, 5 - сопло
В настоящее время промышленность выпускает переносные пеносмесители ПС-1, ПС-2, аналогичных по конструкции и различающихся только размерами и технической характеристикой.

Пеносмесительсостоит из: корпуса 3, в котором расположено сопло 5, направленное через рабочую камеру 2 на входное отверстие диффузора 4. Струя воды, проходя через сопло в диффузор, создает в рабочей камере 2 разрежение. Под действием разрежения во всасывающий шланг 1 из емкости (бочки, бака, цистерны) пенообразователь поступает в рабочую камеру, где и смешивается с водой, образуя пенообразующий раствор.

Испытания пеносмесителя на прочность материала и герметичность соединений производят гидравлическим давлением 1,5 МПа (15 кгс/см2), при этом просачивание воды в течение 1 минуты не допускается.

ПОКАЗАТЕЛИ

ПЕНОСМЕСИТЕЛИ








ПС-1

ПС-2







Давление перед пеносмесителем, МПа

0,7…1,0







Давление за пеносмесителем, МПа

0,45…0,70 (не менее)







Расход раствора пенообразователя, л/с

5,0…6,0

10,0…12,0




Количество подсасываемого пенообразователя при напоре перед смесителем 0,8 МПа, л/с

0,26

0,52




Дозировка пенообразователя ПО-1, %

4…6 (нерегулируемая)







Условный проход всасывающего рукава, мм.

16

25




Условный проход соединительных головок, мм.

70

80




Диапазон рабочих температур, °С

-40…+45







Масса, кг.

исполнение 1

3,6 (не более)

5,0 (не более)

исполнение 2

9,0 (не более)

10,0 (не более)




Длина, мм.

исполнение 1

395 (не более)

480 (не более)

исполнение 2

355 (не более)

440 (не более)




Срок службы, лет

8 (не менее)







Дозировку пеносмесителя проверяют водой при напоре перед пеносмесителем 0,7 МПа (7 кгс/см2) и подпоре 0,45 МПа (4,5 кгс/см2). Подсасывание воды определяют по мерной емкости. Оно должно быть в пределах, указанных в таблице, при этом полученный расход подсасываемой воды умножают на 0,86 - коэффициент разности вязкости воды и пенообразователя ПО-1 (при использовании пенообразователей иных типов коэффициент может быть другим, что требуется определить расчетом).

Для нормальной работы емкость с пенообразователей должна быть на уровне смесителя или несколько выше (но не превышать высоты 2 м).

Дозирующие вставки.




Рисунок 2. Дозирующая вставка:

1 - манометр, 2 – корпус, 3 – соединит. головки,

4 - приемный патрубок, 5 – дозирующая шайба
Дозирующие вставки предназначены для введения пенообразователя в поток воды из цистерны пожарного автомобиля пенного пожаротушения. Дозирующие вставки устанавливают чаще всего в напорных рукавных линиях в тех случаях, когда необходимо обеспечить большие расходы пенообразующего раствора, например для питания пеноподъемников с двумя-тремя пеногенераторами ГПС-600 или одного ГПС-2000.

Дозирующая вставка состоит из: цилиндрического корпуса 2 с соединительными головками 3 для пожарных рукавов, по которым поступает вода. Пенообразователь во вставку поступает от насоса пожарного автомобиля пенного тушения по пожарному рукаву через дозирующую шайбу 5, расположенную в приемном патрубке 4.

Площадь отверстия дозирующей шайбы определяют по формуле:

,

где Q – расход пенообразователя, м куб./с;

m - коэффициент расхода,

g – ускорение свободного падения, м/с кв.,

D H – разность напоров в рукавной линии с пенообразователем и водой, м (D H = Hп - Hв).

При подаче пенообразователя в дозирующую вставку насос, подающий пенообразователь, должен создавать напор от 2 до 30 м (в зависимости от числа подключенных пеногенераторов) и всегда должен быть выше напора в рукавной линии.

Дозирующие вставки можно устанавливать и на всасывающей линии. В этом случае они должны быть оборудованы соответствующими присоединительными головками.

Стволы воздушно-пенные.






Рисунок 3. СВПЭ: 1 – шланг дюритовый,

2 – ниппель, 3 – вакуумная камера,

4 – выходная камера, 5 – кожух,

6 – приемная камера, 7 – соединительная головка
Воздушно-пенные стволы предназначены для получения из водного раствора пенообразователя воздушно-механической пены низкой кратности (до 20) и подачи её в очаг пожара.

Стволы пожарные ручные СВПЭ и СВП имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя непосредственно у ствола из ранцевого бачка или другой емкости.






Рисунок 4. СВП: 1 – корпус ствола,

2 – отверстия, 3 – конусная камера,

4 – отверстия в кожухе, 5 - кожух
Ствол СВПЭ состоит из корпуса, на котором с одной стороны укреплена соединительная головка 7 для присоединения пожарного рукава, а с другой - кожух 5, в котором пенообразующий раствор перемешивается с воздухом и. формируется пенная струя. В корпусе ствола имеется три камеры: приемная 6, вакуумная 3 и выходная 4. На вакуумной камере расположен ниппель 2 диаметром 16 мм для присоединения шланга 1, через который всасывается пенообразователь.

Принцип работы ствола СВП следующий:

Пенообразующий раствор, проходя через отверстия в корпусе ствола 1, создает в конусной камере 3 разрежение, благодаря чему воздух подсасывается через восемь отверстий, равномерно расположенных в кожухе 5 ствола. Поступающий в кожух воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Работа ствола СВПЭ отличается от работы ствола СВП тем, что в приёмную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бачка или другой емкости подсасывается пенообразователь.

Воздушно-пенные стволы СВПЭ и СВП надежны в работе. Пена низкого качества может образоваться из-за засорения центрального отверстия, попадания в вакуумную камеру посторонних предметов или применения пенообразователя с пониженными пенообразующими свойствами. В этом случае ствол следует разобрать, а при необходимости заменить пенообразователь.

Возможными причинами нарушения нормальной работы ствола СВПЭ могут быть закупоривание всасывающего шланга посторонними предметами, отслоившейся тканью шланга, опускание шланга до упора на дно сосуда с пенообразователем. В последнем случае следует приподнять шланг и, если работа ствола не улучшится, снять и проверить его. При эксплуатации воздушно-пенные стволы СВПЭ и СВП не требуют особого ухода. Необходимо следить лишь за тем, чтобы поверхность кожуха не была смята, прокладка на присоединительной части была исправна, а ствол после работы промыт чистой водой.

Пеногенераторы.



ГПС-600



ГПС-600П

Рисунок 6.





ГПС-2000

Рисунок 7.





ГПС-100



ГПС-100П

Рисунок 5.

Генераторы пены средней кратности предназначены для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи её в очаг пожара.




Рисунок 8. ГПС

1 – кассета сеток, 2 – ремень, 3 – корпус,

4 – корпус распылителя, 5 – соединительная головка.
Пеногенератор состоит из:

« пакета сеток 1,

« ремень 2,

« корпуса 3,

« корпуса распылителя с направляющим устройством 4,

« соединительная головка 5.

Принцип работы генераторов ГПС:

6 %-ный пенообразующий раствор по рукавам подается к распылителю пеногенератора, в котором поток измельчается на отдельные капли. Конгломерат капель раствора при движении от распылителя к сетке подсасывает воздух из внешней среды в диффузор корпуса генератора. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

При эксплуатации особое внимание обращают на состояние пакета сеток, предохраняя их от коррозии и механических повреждений.

Пеногенераторы ГПС чаще всего применяют как ручные стволы, однако в некоторых случаях их устанавливаются стационарно. Аэродромные пожарные автомобили комплектуют не только ручными генераторами ГПС, но и стационарными, установленными в подбамперных пространствах для создания пенной полосы перед пожарным автомобилем и за ним. Стационарно устанавливают пеногенераторы в пенных камерах резервуаров с горючими жидкостями, а также в некоторых установках автоматического пожаротушения.

Пеносливные устройства.

Пеносливные устройства предназначены для тушения пожаров жидкостей в резервуарах.

Пеносливные устройства подразделяют на:

« стационарные;

« передвижные.

К стационарным пеносливным устройствам относятся:

« пеносливная камера;

« стационарный генератор воздушно-механической пены.




Рисунок 9.

Универсальная пеносливная камера

1, 2 – крышка, 3 – корпус, 4 – труба,

5 – струйный насадок, 6 – подводящая труба,

7 – патрубок.
Универсальная пеносливная камера предназначена для подачи в резервуар огнетушащей пены.

Она состоит из корпуса 3 с крышкой 1, к которому приварен патрубок 7 для слива пены в резервуар.

Через днище камеры в корпус введена труба 4 с крышкой из целлулоуда. В нижней части трубы закреплен струйный насадок 5. К трубе 4 прикреплены три трубы 6: центральная и две боковые, оканчивающиеся пожарными соединительными головками. Боковые трубы предназначены для подачи в камеру химической пены (при этом на центральную трубу надевают заглушку), а центральная труба - для подачи водного раствора пенообразователя для образования воздушно-механической пены.

После перегорания целлулоидной диафрагмы (3-5 мин) пенообразующий раствор поступает к насадку 5 и входит в диффузор. В камере создается разрежение, в результате которого через боковые патрубки 6 подсасывается воздух и на выходе из трубы 4 образуется воздушно-механическая пена, которая через патрубок 7 поступает в резервуар. При тушении пожара в резервуаре воздушно-механической пеной к среднему патрубку подается 4-х %ный водный раствор пенообразователя с расходом 17 л/с при напоре перед насадком 5 не менее 60 м. Получают до 150 л/с воздушно-механической пены кратностью 8,5.

Пеносливная камера отличается от универсальной отсутствием устройства для получения воздушно-механической пены, т. е. трубы 4, насадка 5, диафрагмы.




Рисунок 10.
Передвижные пеносливные устройства предназначены для подачи пены в резервуары с нефтепродуктами. К месту пожара их доставляют транспортными средствами. В качестве передвижных пеносливных устройств применяют телескопические подъемники-пеносливы.

Подъемник-пенослив состоит из опорного ствола с опорными рычагами, телескопического механизма выдвигания, гребенки, двух генераторов пены ГПС-600 и двух шестов для подъема и опускания подъемника.

Стол служит опорой подъемника-пенослива и состоит из центральной трубы, приваренной к диску. Диск имеет три шарнирно укрепленных рычага, увеличивающих площадь опоры ствола. На каждом рычаге имеется зуб для лучшего сцепления с грунтом. В верхнюю часть опорного стола входит шпиндель наружной трубы, который фиксируется стопорным винтом.

В наружной трубе расположена выдвигающаяся внутренняя труба. Для герметичности между трубами установлен сальник. К наружной трубе приварены два патрубка для присоединения напорных рукавных линий. К верхней части наружной трубы прикреплены скобы для растяжек и кронштейн, на котором укреплен валик с роликом механизма выдвижения. Нижний узел состоит из вала с барабаном и фиксатором. Вал с обеих сторон снабжен рукоятками для привода. На барабан намотаны два троса: один предназначен для выдвигания, другой — для сдвигания внутренней трубы. При помощи фиксатора на барабане можно установить подъемник на нужной высоте.

В верхней части внутренней трубы имеется резьбовая муфта для присоединения удлинителя, который представляет собой отрезок трубы с двумя гайками, предназначенными для присоединения к внутренней трубе и гребенке. Гребенка состоит из вертикальной и горизонтальной труб. Горизонтальная труба имеет два патрубка с соединительными головками для присоединения ГПС-600. Модернизированный телескопический подъемник-пенослив доставляют к месту пожара транспортными средствами и собирают на месте в горизонтальном положении.

Пенообразующий раствор подают к пеносливу от пожарных насосов. Воздушно-механическая пена поступает из 2-х ГПС-600.

К неисправностям телескопических подъемников-пеносливов относится перекос внутренней трубы в сальнике или муфте. Неисправный сальник необходимо заменить. После работы пенослив промывают водой и заново смазывают все валики, ролики и барабан подъемного механизма. После работы генераторы осматривают, поврежденные сетки или корпус ремонтируют. Вмятины на корпусе выравнивают. Тросы и растяжки перед постановкой в боевой расчет испытывают на прочность в соответствии с паспортом завода-изготовителя.




Рисунок 11. Ствол пожарный лафетный комбинированный ПЛС-60КС

1 - кожух; 2 - насадок; 3 - успокоитель;

4 - выпрямитель; 5 - ствол; 6 - распылитель;

7 - рычаг; 8 - переключатель; 9 - фиксатор;

10 - разветвление; 11 - тройник; 12 – фланец.
Ствол пожарный лафетный комбинированный ПЛС-60КС предназначен для создания и направления струи воды или воздушно-механической пены при тушении пожаров и входит в комплект пожарного автомобиля.

Он изготовлен по схеме «труба в трубе» и состоит из тройника 11, фланца 12 для присоединения к водоисточнику, разветвления 10, распылителя 6, ствола для формирования водяной струи 5 с насадком 2, кожух (ствола для получения воздушно-механической пены) 1, выпрямителя 4 и успокоителя 3, смонтированных в стволе, переключающего устройства 8 и рычагов управления 7. Разветвление 10 шарнирно закреплено на приемном корпусе, который соединен с опорным фланцем. На разветвлении 10 и тройнике 11 укреплен механизм фиксации ствола 9. Внутри ствола 5 установлен четырехлопастный успокоитель. Благодаря наличию обратных клапанов можно присоединять и заменять рукавную линию без прекращения работы лафетного ствола.

Принцип работы ствола следующий: По стволу 5, оканчивающемуся насадком с внутренним выходным отверстием диаметром 28 мм, подается компактная струя воды или раствор смачивателя. При этом рукоятка в патрубке должна находиться в положении В (вода). При переключении рукоятки в положение П (пена) перекрываются отверстия переключателя 8, и подаваемый раствор пенообразователя, проходя через боковые отверстия в трубе, подсасывает воздух. В кольцевом промежутке между стволом 5 и кожухом 1 образуется воздушно-механическая пена, которая подается в очаг пожара.

Стволом управляет человек, пользуясь рукояткой, которая фиксируется вентилем в положении, удобном для работы. Все поворотные соединения уплотнены кольцевыми резиновыми манжетами.

Устойчивость при действии реактивной силы, возникающей при подаче воды и стремящейся опрокинуть ствол, обеспечивается опорой, состоящей из съемного лафета, который представляет собой две симметрично изогнутые лапы с шипами.




Рисунок 12. Стационарный лафетный ствол комбинированный СПЛК-20С:

1 – кожух; 2 - насадок; 3 - труба;

4 - фиксирующее устройство; 5 - фланец;

6, 8 - рукоятки; 7 - золотник; 9 - патрубок
Ствол стационарный СПЛК-20С является модификацией переносного лафетного ствола СПЛК-20П и отличается от него отсутствием приемного корпуса и опоры (лафета). Ствол устанавливают стационарно (обычно на кабинах пожарных автоцистерн) и используют для создания и направления струи воды или воздушно-механической пены при тушении пожаров.

Принцип работы пожарного лафетного ствола СПЛК-20С аналогичен работе стволов ПЛС-40С и ПЛС-60С.

Тактико-технические показатели приборов подачи пены.

Прибор подачи пены

Напор у прибора, м.

Концентрация раствора, %

Расход, л/с

Кратность пены

Производительность по пене, м3/мин (л/с)

Дальность подачи пены, м.







воды

ПО

раствора ПО



















ПЛСК-20 П

40-60

6

18,8

1,2

20

10

12

50

ПЛСК-20 С

40-60

6

21,62

1,38

23

10

14

50

ПЛСК-60 С

40-60

6

47,0

3,0

50

10

30

50

СВП

40-60

6

5,64

0,36

6

8

3

28

СВП-2 (СВПЭ-2)

40-60

6

3,76

0,24

4

8

2

15

СВП-4 (СВПЭ-4)

40-60

6

7,52

0,48

8

8

4

18

СВП-8 (СВПЭ-8)

40-60

6

15,04

0,96

16

8

8

20

ГПС-200

40-60

6

1,88

0,12

2

80-100

12 (200)

6-8

ГПС-600

40-60

6

5,64

0,36

6

80-100

36 (600)

10

ГПС-2000

40-60

6

18,8

1,2

20

80-100




12

Проекты по теме:



Поиск

Вики

Архив

Строительство

Наука

Бизнес

Промышленность


Оборудование

Технологии

Безопасность
Основные порталы (построено редакторами)

Фотоблоги

Каталог авторов (частные аккаунты)

Правила пользования Сайтом
Правила публикации материалов
Как сделать запрос на удаление материала
Политика конфиденциальности и обработки персональных данных

При перепечатке материалов ссылка на pandia.ru обязательна.
Минимальная ширина экрана монитора для комфортного просмотра сайта: 1200 пикселей.

Мы признательны за найденные неточности в материалах, опечатки, некорректное отображение элементов на странице - отправляйте на 
support@pandia.ru

Авторам
Открыть сайт
Войти
Пожаловаться

О проекте
Главная страница
Справка
О проекте
Сообщить о нарушении
Форма обратной связи

Copyright © 2009-2022 PandiaВсе права защищены. Мнение редакции может не совпадать с мнениями авторов.
Автоответчик: +7 495 7950139 228504
Написать письмо: 
support@pandia.ru

Реклама на сайте
Размещение статей

Карта сайта
Проекты
Обучение
Top
Помощь
Контакты

Архивы
Все категории
Архивные категории
Все статьи
Фотоархивы

 



написать администратору сайта