Геометрия 10_урок2. Урок 2 Проверка домашнего задания 1 Сформулируйте аксиомы стереометрии и оформите рисунки на доске
Скачать 0.51 Mb.
|
Стереометрия Аксиомы стереометрииГеометрия 10 класс. Некоторые следствия из аксиом Урок 2 Проверка домашнего задания: 1)Сформулируйте аксиомы стереометрии и оформите рисунки на доске. А В С Д Р Е К М Д 2) №1 (в,г). Назовите по рисунку: в) точки, лежащие в плоскостях АДВ и ДВС; г) прямые по которым пересекаются плоскости АВС и ДСВ, АВД и СДА, РДС и АВС. Проверка домашнего задания: С А В С Д А1 В1 С1 Д1 Q P R К М 2) 2(б,д). Назовите по рисунку: б) плоскости, в которых лежит прямая АА1; д) точки пересечения прямых МК и ДС, В1С1 и ВР, С1М и ДС. Проверка домашнего задания: Теорема 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна. а М α Некоторые следствия из аксиом: Теорема 1. Через прямую и не лежащую на ней точку проходит плоскость и притом только одна. Дано: а, М ¢ а Доказать: (а, М) с α α- единственная а М α Доказательство : 1. Р, О с а; {Р,О,М} ¢ а Р О По аксиоме А1: через точки Р, О, М проходит плоскость . По аксиоме А2: т.к. две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости, т.е. (а, М) с α 2. Любая плоскость проходящая через прямую а и точку М проходит через точки Р, О, и М, значит по аксиоме А1 она – единственная. Ч.т.д. Некоторые следствия из аксиом: Теорема 2. Через две пересекающиеся прямые проходит плоскость, и притом только одна. а b М Н α Некоторые следствия из аксиом: Теорема 2. Через две пересекающиеся прямые проходит плоскость, и притом только одна. Дано: а∩b Доказать: 1. (а∩b) с α 2. α- единственная а b М Н α Доказательство: 1.Через а и Н а, Н b проходит плоскость α. (М , Н) α, (М,Н) b, значит по А2 все точки b принадлежат плоскости. 2. Плоскость проходит через а и b и она единственная, т.к. любая плоскость, проходящая через прямые а и b, проходит и через Н, значит α – единственная. Решить задачу № 6 А В С α Три данные точки соединены попарно отрезками. Докажите, что все отрезки лежат в одной плоскости. Доказательство: 1. (А,В,С) α, значит по А1 через А,В,С проходит единственная плоскость. 2. Две точки каждого отрезка лежат в плоскости, значит по А2 все точки каждого из отрезков лежат в плоскости α. 3. Вывод: АВ, ВС, АС лежат в плоскости α 1 случай. А В С α 2 случай. Доказательство: Так как 3 точки принадлежат одной прямой, то по А2 все точки этой прямой лежат в плоскости. Задача. А В С Д М О АВСД – ромб, О – точка пересечения его диагоналей, М – точка пространства, не лежащая в плоскости ромба. Точки А, Д, О лежат в плоскости α. Определить и обосновать: Лежат ли в плоскости α точки В и С? Лежит ли в плоскости МОВ точка Д? Задача. А В С Д М О АВСД – ромб, О – точка пересечения его диагоналей, М – точка пространства, не лежащая в плоскости ромба. Точки А, Д, О лежат в плоскости α. Определить и обосновать: Назовите линию пересечения плоскостей МОВ и АДО. Вычислите площадь ромба, если сторона его равна 4 см, а угол равен 60º. Предложите различные способы вычисления площади ромба. А В С Д 60º 4 4 4 4 SАВСД = АВ · АД · sinA SАВСД = (ВД · АС):2 Формулы для вычисления площади ромба: ∆АВД = ∆ВСД (по трем сторонам), значит SАВД = SВСД. Домашнее задание: 1. Прочитать пункты 2; 3 на стр. 4 – 7 2. Выучить теоремы 1, 2 ( с доказательством); повторить аксиомы А1 – А3 3. Решить задачу №8 ( с объяснением ответов) |