Главная страница

Устройство работа и основные регулировки опрыскивателя ОПШ. Устройство работа и основные регулировки опрыскивателя опш15


Скачать 145.8 Kb.
НазваниеУстройство работа и основные регулировки опрыскивателя опш15
Дата11.10.2022
Размер145.8 Kb.
Формат файлаdocx
Имя файлаУстройство работа и основные регулировки опрыскивателя ОПШ.docx
ТипДокументы
#727811

Устройство работа и основные регулировки опрыскивателя ОПШ-15

Опрыскиватели предназначены для уничтожения вредителей, возбудителей болезней, сорняков путем нанесения на растение жидких мелкораспыленных ядохимикатов.

Типовой технологический процесс опрыскивателя заключается в следующем. Рабочая жидкость непрерывно перемешивается в баке машины с целью сохранения ее однородного состава и под давлением выбрасывается на растение в мелкораспыленном виде.

Основные базовые сборочные единицы опрыскивателей унифицированы. Путем их разного сочетания и применения дополнительных рабочих органов созданы различные модификации опрыскивателей.

Основные сборочные единицы опрыскивателя: насос, перемешивающее устройство, регулятор давления, распыливающее устройство, заправочное устройство. Опрыскиватель ОПШ-15 предназначен для защиты полевых культур, может работать со всеми пестицидами, применяемыми в виде растворов, суспензий и эмульсий. Рабочая скорость опрыскивателя на основных операциях 610 км/ч, ширина захвата 15 м, производительность915 га/ч, расход рабочей жидкости 75300 л/га, рабочее давление в коллекторе штанги не более 0,8 МПа, вместимость бака — 1200 л. Для работы на поле с технологической колеей расширяют до 1800 мм расстояние между колесами и увеличивают до 500 мм дорожный просвет. Бак опрыскивателя заполняется водой или рабочим раствором заправочными средствами через горловину, в которой размещен заливной фильтр. При отсутствии заправочных средств можно использовать и собственный насос опрыскивателя.
Привод насоса опрыскивателя осуществляют от ВОМ трактора. Перед работой необходимо осмотреть машину и убедиться в том, что она собрана и прицеплена правильно, все штанговые и болтовые соединения затянуты. Затем в бак заливают 100 л воды и плавно включают ВОМ трактора на пониженных оборотах двигателя, предварительно установив ручку муфтового крана в закрытое положение. Проверяют работу опрыскивателя без включения потока жидкости через распылители. Убедившись, что насос, карданная передача, регулятор давления, всасывающая и нагнетательные коммуникации функционируют нормально (нехарактерные шумы и стуки отсутствуют), устанавливают ручку муфтового крана в открытое положение. Плавно включают ВОМ трактора и, постепенно увеличивая число оборотов до номинальных, при помощи маховичка регулятора доводят давление в напорной системе до 1,2 МПа и проводят обработку в течение 5 мин.

Эффективность опрыскивания в большой степени зависит от правильной регулировки опрыскивателей на заданную норму расхода жидкости.
Перед началом работы опрыскивателя проверяется: работа манометра; чистота бака, форсунок; работоспособность насоса; герметичность гидросистемы; исправность мешалки и поступление рабочей жидкости обратно в бак; горизонтальность штанги. Расход рабочей жидкости опрыскивателя в единицу времени (мин) зависит от давления в нагнетательной коммуникации, количества распыливающих наконечников и размера их выходных отверстий.

Определение расхода осуществляется по формуле:

q расп = (Q*B*V)/600n,

где q расп - расход жидкости через один распылитель, л/мин; В - ширина захвата опрыскивателя, м; V - скорость движения опрыскивателя, км/час; Q - норма расхода рабочей жидкости, л/га; n - количество распылителей на опрыскивателе.

q=50*6*8/600n

Опишите общее устройство жатки зерноуборочного комбайна АКРОС 585, устройство и регулировку мотовила и режущего аппарата жатки. Укажите, что необходимо переоборудовать при переходе с однофазного на двухфазный способ уборки.

Жатвенная часть с помощью промежуточного соединительного механизма соединяется с наклонной камерой, которая в свою очередь соединяется с корпусом молотилки. Такое соединение жатвенной части с наклонной камерой обеспечивает возможность совершать колебания как в продольной, так и поперечной вертикальных плоскостях, обеспечивая ей возможность опираться на опорные башмаки, копировать рельеф поля и поддерживать установленную высоту среза растений режущим аппаратом. Монтаж и демонтаж жатвенной части не требует грузоподъемных машин и легко осуществляется
одним оператором, работающим на комбайне. Монтаж и демонтаж платформы-подборщика аналогичен монтажу жатвенной части. Жатвенная часть оборудована делителями, мотовилом, режущим аппаратом, шнеком и механизмами привода режущего аппарата, мотовила и шнека.

Молотилка состоит из следующих основных узлов и механизмов: молотильно-сепарирующего устройства (МСУ), включающего в себя барабан, подбарабанье, отбойный битер, соломотряс, транспортную доску, очистку, зернового и колосового шнеков, домолачивающего устройства, зернового элеватора с загружающим устройством в бункер, распределительного шнека домолачивающего устройства, выгрузного шнека.

Регулировка мотовила. Мотовило – первый рабочий орган, который вступает во взаимодействие с убираемой культурой. Оно имеет следующие регулировки:

• Установка мотовила по высоте относительно режущего аппарата. Высота расположения мотовила должна быть такой, чтобы точка касания граблины мотовила была выше центра тяжести срезанного стебля. По данным ВИМ, эта точка расположена на высоте, равной одной третьей длины срезанного стебля, считая от вершины колоса. Установка мотовила по высоте осуществляется с помощью гидроцилиндров, установленных на боковинах жатки.

• Вынос мотовила относительно режущего аппарата по ходу движения выполняется в зависимости от состояния (высоты и степени полеглости) убираемой культуры. Максимальный вынос мотовила с помощью гидроцилиндров, смонтированных на поддержках мотовила, составляет 650 мм при опущенном вале мотовила до положения касания пальцев граблин поверхности поля при уборке полеглых хлебов. Вынос мотовила зависит и от высоты его расположения. Он изменяется автоматически с помощью рычажной системы, соединяющей ползуны вала мотовила с корпусом жатки. При подъеме
мотовила оно приближается к режущему аппарату, при опускании выносится вперед.

• Изменение частоты вращения мотовила осуществляется с помощью гидромотора, управляемого гидроблоком управления. Частота вращения регулируется в пределах 15–39 мин-1 и зависит от скорости движения комбайна. Соотношение окружной скорости граблин мотовила к скорости движения комбайна должно быть в пределах 1,3 : 1,7. Более высокий показатель может привести к выбиванию зерна из колоса.

• Угол наклона пальцев граблин регулируется изменением величины эксцентрика, система крестовин мотовила с помощью рычагов относительно секторов с отверстиями, расположенных на поддержках мотовила. Угол изменяется в пределах от 15° по вертикали вперед по ходу до 30° против хода комбайна. Его выбирают в зависимости от состояния убираемой культуры.

• Натяжение цепной передачи от гидромотора привода мотовила на ведомую звездочку вала мотовила. Эта регулировка осуществляется с помощью штанги, изменяющей положение гидромотора относительно кронштейна, на котором он смонтирован.

• Регулировка предохранительной фрикционной муфты привода вала мотовила осуществляется за счет пружин, прижимающих ведомую и ведущую части муфты. Пружины сжимаются до передачи крутящего момента 40–45 Нм.

• Регулировка высоты среза осуществляется путем изменения положения опорных башмаков относительно корпуса жатки. Они устанавливаются с помощью рукояток, фиксируемых в четырех положениях, соответствующих высоте среза: 50, 100, 140, 185 мм. При необходимости большей высоты среза жатки выводится из режима копирования путем жесткой фиксации переходной рамки с корпусом наклонной камеры. Максимальная высота среза устанавливается с помощью гидроцилиндра подъема жатки в пределах 200–1200 мм.

• Регулировка горизонтальности жатки производится с помощью нижнего блока пружин, расположенного под наклонной камерой справа по ходу движения. При поднятой жатке она должна располагаться горизонтально. При наличии перекоса – отрегулировать натяжение нижнего блока пружин. Если левый край жатки ниже правого – натянуть пружины, если выше правого – ослабить пружины.

• Регулировка разгружающих пружин, обеспечивающих давление жатки на опорные башмаки: должно быть в пределах 20–30 кг. Разгружающие пружины должны быть одинаковой длины, и усилие на подъем вывешенной жатки справа и слева за делители должно составлять вышеуказанные пределы.

• Регулировка положения шнека относительно платформы жатки осуществляется путем перемещения шнека по высоте относительно боковин жатки в пределах 5–35 мм.

• Вылет пальцев шнека регулируется за счет поворота коленчатого вала пальцев шнека рычагом, расположенным на боковине (имеются крепления шнека) с правой стороны. Зазор между торцом пальцев и днищем шнека должен быть на 5–10 мм больше, чем зазор между витками шнека и корпусом жатки.

• Предохранительная муфта привода наклонной камеры регулируется в зависимости от условий работы – должны быть в пределах 300–600 Нм.

Величина передаваемого крутящего момента регулируется ослаблением или сжатием пружин соответственно

Передаваемый крутящий момент

Положение пружин

600

заводская затяжка

500

открутить гайки на 0,5 оборота

400

открутить гайки на 1 оборот

 

открутить гайки на 1,5 оборота

• Регулировка времени опускания жатки из транспортного положения осуществляется регулировкой дросселирующего настраиваемого клапана (КДН), которое должно быть 7–10 секунд. Клапан расположен на раме комбайна с левой стороны около колеса ведущего моста.

• Регулировка вылета пальцев битера наклонной камеры выполняется аналогично, как и у шнека жатки.

• Регулировка натяжения цепи транспортера наклонной камеры осуществляется путем перемещения ведомого вала транспортера относительно корпуса наклонной камеры с помощью винтов, приваренных к кронштейнам крепления ведомого вала, и гаек относительно уголков, приваренных к боковинам наклонной камеры. Натяжение должно обеспечивать зазор между планками мотовила и днищем наклонной камеры 10–15 мм.

Опишите Назначение устройство технологический процесс сушилки СЗШ 16А. Укажите преимущества и недостатки шахтных сушилок.

Шахтные зерносушилки в отличие от барабанных требуют более тщательной очистки зернового материала от посторонних примесей. Их нельзя использовать для сушки малосыпучего вороха, например вороха семенников трав, льна, а также сильно засоренного вороха зерновых культур.

Зерносушилка СЗШ-16Аиспользуется в очистительно-сушильных комплексах для сушки продовольственного, семенного и фуражного зерна зерновых и крупяных культур.

 Рис. 2. Зерносушилка СЗШ-16А:

1, 12 - вентиляторы; 2- топка; 3 - выпускная труба; 4-диффузор; 5-сушильные камеры; 6, 16, 18- бункера; 7… 10- нории; Л-зернопроводящие трубы; 13, 14- охладительные колонки; 75-шлюзовой затвор; 17- разгрузочное устройство; 19- патрубок; 20 - трубопровод

Сушилка состоит из двух сушильных камер 5 (рис. 2), топки 2, загрузочных 7, 9 и разгрузочных 8 норий, двух охладительных колонок 13 и 14, подводящего и двух отводящих диффузоров 4, двух отсасывающих вентиляторов /, двух разгрузочных устройств 17, механизма привода, зернопроводящих труб 11 и системы автоматического контроля и регулирования режима сушки.

Топка представляет собой самостоятельный агрегат, смонтированный в отдельной пристройке. Теплоноситель получают в результате смешивания топочных газов с атмосферным воздухом или нагрева атмосферного воздуха. КПД топки в первом случае выше, чем во втором. Поэтому нагретый воздух используют только для сушки продовольственных партий зерна и крупяных культур. Теплоноситель поступает в сушильную камеру по трубопроводу 20 и подводящему диффузору.

Сушильная камера - это шахта размером 980 х 1980 х 3650 мм. Две шахты смонтированы на бетонном основании так, что между ними имеется пространство, перекрытое подводящим диффузором, к которому присоединен трубопровод 20. На боковых стенках шахт установлены диффузоры 4, предназначенные для отвода отработанного теплоносителя. Диффузоры соединены патрубком /Ус всасывающим окном вентиляторов 1. В патрубке выполнены жалюзи с регулятором.

Шахта состоит из рамы, стенок (боковых с вырезами и торцоных глухих), пятигранных коробов 2 и 4 (рис. В, а), размещенных рядами между боковыми стенками 1 и 3 шахты. В каждом ряду насчитывается восемь полых коробов. Ребро каждого короба направлено вверх, открытая часть -вниз. Короба установлены в горизонтальных рядах в шахматном порядке. Часть рядов из коробов предназначена для ввода в сушильную шахту теплоносителя. Концы этих коробов 4 присоединены к окнам в стенке 3, обращенной к межшахтному пространству. Ряды коробов, расположенных между рядами подводящих коробов, предназначены для отвода отработанных газов. Концы отводящих коробов 2 присоединены к окнам стенки 1 шахты, обращенной к отводящему диффузору 4 (см. рис. 2).

Над шахтами смонтированы над сушильные бункера 6 закрытого типа. На вертикальной стенке бункеров установлены датчики верхнего и нижнего уровней зерна, с помощью которых автоматика управляет работой разгрузочного устройства. В нижней части каждой шахты размещены разгрузочное устройство 17, под сушильный бункер 18 с патрубком, подводящим высушенное зерно к нории 8.

Разгрузочное устройство состоит из неподвижной лотковой коробки 5 (рис. В, в) с восемью окнами 6 и подвижной каретки, на которой закреплены пластины 8. Каретка движется возвратно-поступательно под действием механизма 7. Выпуск зерна регулируют, изменяя зазор между выпускными окнами и пластинами каретки, а также амплитуду колебаний пластин.

За каждый ход каретки пластины сбрасывают порцию зерна в под сушильный бункер, обеспечивая непрерывную выгрузку высушенного зерна и движение сверху вниз всего объема зерна, находящегося в шахте.

 Рис. 3. Устройство коробов (о), схемы движения зерна, теплоносителя (б) и разгрузки зерна (в):

1, 3 - стенки шахты; 2, 4 - соответственно отводящие и подводящие короба; 5- коробка; 6- окно для выпуска зерна; 7- кривошипно-шатунный механизм; 8- пластина каретки

Скорость движения зерен в шахте зависит от зазора между выпускными окнами и пластинами, амплитуды и частоты перемещений каретки с пластинами. Зазор изменяют от О до 20 мм, поднимая и опуская каретку. Амплитуду колебаний в пределах О…2Омм регулируют, изменяя взаимное расположение эксцентриков привода. Для ускорения выгрузки зерна из шахты привод снабжен механизмом включения, которым каретку перемещают на большую амплитуду и полностью открывают выходные отверстия. Охладительное устройство составлено из двух колонок, аналогичных СЗСБ-8А.

Рабочий процесс протекает следующим образом. Предварительно очищенный влажный материал непрерывно подается нориями 7 и 9 (рис. 2) в над сушильный бункер 6 каждой шахты и заполняет пространство между коробами. Когда уровень зерна в бункере 6 достигнет верхнего датчика, автоматика включает привод кареток разгрузочного устройства и зерно под действием силы тяжести движется вниз. Если бункер опорожнится до нижнего датчика, автоматика выключает на время привод кареток.

При установившемся режиме зерно медленно движется вниз в пространстве между коробами. Теплоноситель входит через окна в стенке 3 (см. рис. В, а) в подводящие короба 4, выходит из-под их боковых граней, просачивается сквозь слой зерна (рис. В, б), поступает снизу в отводящие короба 2 и выводится из сушильной камеры вентилятором 1 (см. рис. 2). Теплоноситель, двигаясь сквозь слой зерна, нагревает его, испаряет влагу и уносит ее из сушилки.

Высушенное зерно выгружается в бункер 18, поступает в норию 8, которая загружает его в охладительные колонки. После охлаждения атмосферным воздухом зерно выгружается из колонок шлюзовым затвором 15 в бункер 16 и подается норией 10 на последующую обработку.

Режим сушки регулируют, изменяя температуру теплоносителя и скорость движения зерна в шахте. Температуру теплоносителя регулируют, изменяя подачу топлива в горелку и холодного воздуха в смесительную камеру. Скорость движения теплоносителя в слое зерна изменяют регулятором поворота жалюзи в патрубке 19. Она должна быть меньше критической скорости семян; в противном случае семена будут уноситься теплоносителем. Скорость движения зерна в шахте (экспозицию сушки) регулируют с помощью разгрузочного устройства.

Процесс сушки необходимо периодически контролировать, отбирая пробы для определения влажности и качества зерна и семян. Из каждой партии зерна, поступающей для сушки, отбирают средние пробы для определения влажности, а для семян - и всхожести Для контроля температуры нагрева зерна специальным совочком берут пробы в трех-четырех местах нижнего ряда коробов. Зерно ссыпают в деревянный ящик, снабженный термометром. Если температура нагрева зерна окажется выше допустимой, увеличивают выпуск зерна из зерносушилки. Если температура нагрева соответствует максимально допустимой, а влажность зерна после сушки выше кондиционной, его сушат вторично. Через каждые пять-семь дней непрерывной работы зерносушилку очищают.

Производительность на сушке продовольственного зерна пшеницы при снижении влажности с 20 до 14% составляет 20 т/ч

Достоинства шахтной сушилки:

простая конструкция;

возможность снижения расхода топлива после утепления шахты;

возврат горячего воздуха в шахту для повторного использования.

Недостатки шахтной зерносушилки:

неравномерная сушка зерна повышенной влажности;

постоянное засорение шахт и сложная очистка;

обязательное очищение зерновой массы перед сушкой;

повторная сушка влажной массы;

травмирование зерна во время движения по шахте.
Опишите назначение, общее устройство, технологический процесс и

регулировку кормоуборочной машины КС -6Б. Укажите агротехнические

требования, для данной машины.

Приведем полную схему технологического процесса корнеуборочной машины КС-6Б и дадим к ней пояснение.



1 — шнеки; 2 — вал редуктора; 3 — активный диск; 4 — пассивный диск; 5 — вальцы; 6 — продольный элеватор; 7 — ленточный транспортер; 8 — комкодробитель; 9 — погрузочный элеватор; 10 — транспортное средство; 11 — передаточный битер.

Она состоит из ходовой части, аналогичной по устройству с ходовой частью комбайна СК-5 «Нива», с объемным гидроприводом, дизеля СМД-64, шести активных и шести пассивных дисков 3 и 4, шнекового очистителя 1; продольного элеватора 6; ленточного транспортера 7; комкодробителя 8 и погрузочного элеватора 9.

При движении корнеуборочной машины ребристые диски 3 и 4 копачей извлекают корнеплоды из почвы и лопастными битерами перебрасывают их на шнеки 1 очистителя, где ворох очищается от земли и растительных остатков. Активный диск 3 копача вращается на валу 2 редуктора. На первых двух шнеках 1 корнеплоды перемещаются вправо и влево от продольной оси, а на двух задних — к середине, в результате чего они очищаются от почвы.

Очищенные корнеплоды подаются к передаточному битеру 11 и далее —на продольный элеватор 6. Он сбрасывает их в бункер, дно которого — ленточный транспортер 7, подающий корнеплоды на комкодробитель 8, где они очищаются от комков почвы, или на погрузочный элеватор 9, если комки в ворохе отсутствуют. При смене транспортного средства 10 ленточный транспортер 7 и элеватор 9 временно отключают, и корнеплоды накапливаются в бункере.

Гидросистема корнеуборочной машины состоит из двух независимых систем. Основная гидросистема предназначена для подъема и опускания копачей и копиров, погрузочного элеватора, его включения и выключения во время смены транспортных средств на ходу и управления сцеплением дизеля.

Рулевое управление с объемным гидроприводом предназначено для облегчения ручного вождения и периодической корректировки направления движения при автоматическом вождении. Автомат вождения работает следующим образом.


написать администратору сайта