эп. Экологическое право , задача, реф, доклад. Задача Группа лиц на протяжении длительного времени незаконно добывала рыбу и водных животных, выращиваемых ао Аква
Скачать 41.13 Kb.
|
Задача 3. Группа лиц на протяжении длительного времени незаконно добывала рыбу и водных животных, выращиваемых АО «Аква» в специально устроенных (приспособленных) водоемах. Как следует квалифицировать эти действия? Согласно разъяснениям пункта 18 Постановления Пленума Верховного Суда РФ от 05.11.1998 № 14 «О практике применения судами законодательства об ответственности за экологические правонарушения», действия лиц, виновных в незаконном вылове рыбы, добыче водных животных, выращиваемых различными предприятиями и организациями в специально устроенных или приспособленных водоемах, либо завладение рыбой, водными животными, отловленными этими организациями, или находящимися в питомниках, в вольерах дикими животными, птицей, подлежат квалификации как хищение чужого имущества. Однако данное Постановление утратило силу на основании абзаца 2 пункта 48 Постановления Пленума Верховного Суда РФ от 18.10.2012 № 21 «О применении судами законодательства об ответственности за нарушения в области охраны окружающей среды и природопользования». Вместе с тем, Постановление от 18.10.2012 № 21 содержит и ныне действующий пункт 13, согласно которому действия лиц, совершивших незаконное завладение с корыстной целью содержащимися в неволе животными либо их умерщвление, подлежат квалификации как хищение либо уничтожение чужого имущества. Из материалов дела следует, что акционерным обществом «Аква» специально обустроены и приспособлены водоемы для выращивания рыб и водных животных. Будучи выращиваемыми хозяйствующим субъектом и находясь в специально обустроенных (приспособленных) для этого водоемах, рыбы и животные находятся не в состоянии дикой природы, а в неволе. Соответственно, до того, как они будут отпущены в дикую природу, они являются имуществом, то есть собственностью акционерного общества. В этой связи группа лиц, занимающаяся добычей и ловлей подобных рыб и водных животных без разрешения их владельца (общества «Аква») несет ответственность за хищение имущества, поскольку их действия имеют объектом посягательства не окружающую природную среду, а отношения собственности. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ» ЮРИДИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА АДМИНИСТРАТИВНОГО И ФИНАНСОВОГО ПРАВА ДИСЦИПЛИНА «ЭКОЛОГИЧЕСКОЕ ПРАВО» РЕФЕРАТ на тему: Правовые проблемы регулирования охраны озонового слоя атмосферы. Студент: Алексеенко Артём Валерьевич, 4 курс, очная форма обучения, группа Г Донецк 2022 Содержание Введение…………………………………………………………………………..3 1.Озон и климат………………………………………………………………….4 2.Чем нам грозит “озоновая дыра?....................................................................7 3. Состояние озонового слоя над Россией…………………………………...11 4. Проблемы охраны озонового слоя и климата…………………………...12 5. Меры по охране озонового слоя и климата Земли………………………14 6. Озоновое законодательство РФ……………………………………………16 Вывод…………………………………………………………………………….22 Список литературы…………………………………………………………….23 Введение Защита озонового слоя атмосферы является одной из наиболее острых глобальных экологических проблем современности. Его истощение стало одной из основных угроз жизни на земле. Разрушителями озона признаются хлор и бром, которые используются как хладагенты, очистители, пенообразователи в системах холодильного оборудования, пожаротушения и некоторых других. Из-за резкого увеличения их выбросов в атмосферу за последние 35 лет оболочка озонового слоя Земли уменьшилась на десять процентов. По расчетам ученых, в случае потери атмосферой еще сорока процентов озона все живое на планете окажется беззащитным перед смертоносным воздействием ультрафиолетового излучения. По этой причине охрана озонового слоя сегодня отнесена к глобальным проблемам человечества, решение которых - первостепенная задача всех стран. Реализация поставленной задачи осуществляется согласно комментируемой статье в соответствии с международными договорами Российской Федерации, общепризнанными принципами и нормами международного права, а также законодательством РФ. Первым международно-правовым актом, посвященным охране озонового слоя, стала Венская конвенция об охране озонового слоя, принятая в 1985 г. Под озоновым слоем в ней понимается слой атмосферного озона над пограничным слоем планеты; под неблагоприятным воздействием - изменения в физической среде или биоте, включая изменения климата, которые имеют значительные вредные последствия для здоровья человека или для состава, восстановительной способности или продуктивности природных и регулируемых экосистем или для материалов, используемых человеком. Кроме того, характер политических дискуссий, масштабы инициатив в сфере охраны климата за сравнительно недолгий период претерпели значительные изменения: существенно возросло количество и качество нормативного материала по данной тематике, были разработаны специфичные механизмы и методы правового регулирования на уровне международного и национального права. Охрана климата в последние годы является одной из самых широко обсуждаемых проблем. Здесь сталкиваются интересы развитых и развивающихся стран, предприятий, занятых в производстве энергии из традиционных и возобновляемых источников, субъектов, осуществляющих массированные выбросы СОг, других парниковых газов и озоноразрушающих веществ в атмосферу Земли, с интересами охраны окружающей среды и здоровья населения. Данная тема является предметом широкой дискуссии между различными научными школами, политиками, общественностью, экологами и представителями промышленности во всем мире. 1. Озон и климат Способность озона поглощать ультрафиолетовое излучение с точки зрения роли озонового слоя как нашего защитника - “волшебного щита планеты”. Однако сам процесс такого поглощения не проходит бесследно для земной атмосферы. Энергия, которую несет излучение в указанном диапазоне длин волн, в результате поглощения передается атмосферному газу, вызывая его нагрев. Оценки показывают, что выше примерно 20км и в стратосфере, и в большей части мезосферы этот процесс является основным источником нагрева, определяющим, таким образом температуру - её высотное и широтное распределение. Распределение температуры контролирует динамические процессы в атмосферном газе. Таким образом, вся система циркуляции в стратосфере, включая и вертикальный перенос газа, зависит от распределения озона. И если под влиянием антропогенных процессов распределение озона заметно изменится, должна измениться вся картина динамических процессов, включая и взаимодействие стратосферы и тропосферы. Расчеты с помощью атмосферных моделей показывают, что если повсеместно уменьшить концентрацию озона в два раза, то в мезосфере произойдет охлаждение атмосферного газа на 20° С. Это охлаждение в большей части стратосферы (18-40км) составит 6 - 8° С, а на стыке тропосферы и стратосферы (7 - 18км) - 2 - 3° С. рассматривалось лишь одно оптическое свойство молекул озона - поглощать мягкое ультрафиолетовое излучение. Однако молекулы O3 обладают и другими свойствами, существенными для теплового режима атмосферы. Наиболее важное из них - способность поглощать излучение в инфракрасном диапазоне, точнее в полосе с длиной волны примерно 9,6мкм.Для того чтобы понять важность этого свойства озона для теплового режима атмосферы, я немного отступлю от основной линии этого пункта реферата и кратко рассмотрю формирование теплового режима атмосферы и поверхности Земли. В чем же суть так называемого парникового эффекта? Суть его состоит в том, что поверхность Земли поглощать энергию падающего на неё солнечного излучения (ближнего ультрафиолетового, видимого, инфракрасного - всего, которое до неё дошло, почти не поглотившись в воздухе) и переизлучает эту энергию в виде тепловых лучей сугубо в инфракрасной области. Если бы это инфракрасное излучение не поглощалось в атмосфере и не уходило назад в космическое пространство, на Земле было бы невыносимо холодно. Но этого не происходит потому, что большая часть переизлученной энергии не покидает нижних слоев атмосферы, а поглощается там облаками и различными малыми составляющими. Наиболее активны в этом поглощении две атмосферные составляющие - углекислый газ и пары воды. Именно они обеспечивают задержку в атмосфере большей части инфракрасного излучения. Однако существует так называемое окно прозрачности в полосе 8 - 13 мкм, где суммарное поглощение указанными двумя составляющими (CO2 и H2O) мало. В этой области в роли основного поглотителя выступает озон. Как отмечалось выше, озон имеет сильную полосу поглощения в области 9,6мкм, которая и обеспечивает захват уходящего инфракрасного излучения в середине окна. Отмечу, что у молекулы озона имеются и другие полосы поглощения в инфракрасной области (например, с длиной волны 13,8 и 14,4 мкм). Но там они накладываются на сильные полосы поглощения H2O и CO2. В последние два десятилетия человечество все больше беспокоит проблема усиления парникового эффекта из-за увеличения в атмосфере количества CO2. Факт монотонного роста концентрации двуокиси углерода в тропосфере в результате человеческой деятельности (уменьшение площади лесов, сжигании органического топлива, и другие промышленные процессы) установлен с высокой степенью достоверности. Этот рост за последние 20 лет составляет 0,3-0,4% в год. Если тенденция роста CO2 в последующие десятилетия сохранится, то удвоение количества CO2 в атмосфере, которое существовало в доиндустриальную эру, должно произойти примерно в середине XXI в. Правда, наиболее оптимистические модели предсказывают такое удвоение лишь к 2100г. Конечно, реальная картина будет зависеть, прежде всего, от того, как быстро будет расти потребляемое человечеством количество энергии и насколько удастся заменить существующие сегодня источники энергии новыми, чистыми в экологическом отношении. При удвоении количества двуокиси углерода в атмосфере ожидаемое увеличение средней температуры нижней атмосферы составляет 2-3°С в средних и низких широтах и 5-6°С в полярных областях. При удвоении количества углекислого газа в стратосфере, должно произойти понижение температуры (на 10-15° С), поскольку молекулы CO2 принимают активное участие в процессах охлаждения стратосферного воздуха. Такое изменение климата Земли может иметь очень серьезные последствия для многих регионов земного шара. Именно поэтому в настоящее время идет активное обсуждение возможностей уменьшения выбросов углекислого газа в атмосферу и замедление роста количества CO2. Но не только рост концентрации CO2 может привести к усилению парникового эффекта. Свой вклад вносит и рост концентрации озона в тропосфере, вызванный антропогенным загрязнением атмосферы. Конечно, картина с озоном далеко не проста, как в случае CO2. Ведь молекулы O3 играют роль и в процессах нагрева атмосферного газа (за счет поглощения ультрафиолетового излучения Солнца в стратосфере и инфракрасного излучения поверхности в основном в тропосфере) и в процессах его охлаждения (за счет излучения молекулами O3 части поглощенной энергии). Значит можно ожидать уменьшение количества озона в стратосфере из антропогенных источников и увеличение его в тропосфере. Все эти сложности приводят к тому, что оценить суммарный эффект ожидаемого изменения количества озона не так просто. Тем не менее наиболее надежные, по моему мнению являются расчеты по математическим моделям, учитывающим как радиационные, так и конвективные эффекты, показывают, что при ожидаемом удвоении количества озона в тропосфере и уменьшении в двое в стратосфере климатический эффект должен быть в большей мере подобен эффекту от ожидаемого удвоения количества двуокиси углерода, но с меньшей амплитудой. Иначе говоря, если в случае удвоения CO2 вероятно увеличение температуры в среднем по Земле на 3-4°С, то в случае описанного изменения количества озона это увеличение составит около 1° С. Уменьшение вдвое количества стратосферного озона также должно вызвать эффект, подобный эффекту удвоения количества CO2,- охлаждение стратосферы на 15-20°С Следует отметить, что антропогенное увеличение количества озона в тропосфере, которое рассматривалось, прежде всего, с точки зрения дополнительного вклада в парниковый эффект, неизбежно будет сопровождаться и другими отрицательными эффектами. Озон обладает токсическими свойствами, которые могут приводить к поражению легочных тканей человека (и животных), ставя таким образом под угрозу здоровье людей. Ожидается влияние обогащенного озоном воздуха на растения, а также на различные (особенно легкоокисляющиеся) материалы. Подводя итоги сказанного в этом пункте, следует подчеркнуть, что антропогенное увеличение количества озона в тропосфере предвещает нам также мало радостей, как и антропогенное разрушение стратосферного озона. 2. 2. Чем нам грозит “озоновая дыра? Возникновение “озоновых дыр” (сезонное уменьшение содержания озона вдвое и более) впервые наблюдали в конце 70-х годов над Антарктидой. В последующие годы длительность существования и площадь “озоновых дыр” росли, и к настоящему времени они уже захватили южные регионы Австралии, Чили и Аргентины. Параллельно, хотя и с некоторым запозданием, развился процесс истощения озона над Северным полушарием. Вначале 90-х годов наблюдали 20 - 25 % его уменьшения над Скандинавией, Прибалтикой и северо-западными областями России. В отличных от приполярных широтных зон истощение озона менее выражено однако и здесь оно является статистически достоверным (1,5-6,2% за последнее десятилетие). Истощение озонового слоя может оказать значительное влияние на экологию Мирового океана. Многие из имеющихся в нем систем испытывают стресс уже при существующих уровнях естественной Ультрафиолетовой радиации, и увеличение ее интенсивности для некоторых из них может оказаться катастрофическим. В результате воздействия ультрафиолетового излучения у водных организмов нарушается адаптивное поведение (ориентация и миграция), подавляются фотосинтез и ферментативные реакции, а также процессы размножения и развития, особенно на ранних стадиях. Поскольку чувствительность к ультрафиолетовой радиации разных компонентов водных экосистем существенно различается, то в результате разрушения стратосферного озона следует ожидать не только уменьшения общей биомассы, но и изменение структуры водных экосистем. В этих условиях могут погибать и вытесняться полезные чувствительные формы и усиленно размножаться резистентные, токсичные для окружающей среды, например сине-зеленые водоросли. Эффективность водных пищевых цепей в решающей степени определяется продуктивностью их начального звена - фитопланктона. Расчеты показывают, что в случае 25%-го разрушения стратосферного озона следует ожидать 35%-го снижения первичной продуктивности в поверхностных слоях океана и 10%-го снижения во всем слое фотосинтеза. Значимость прогнозируемых изменений становится очевидной, если принять во внимание, что фитопланктон утилизирует более половины углекислого газа в процессе глобального фотосинтеза, и лишь 10-го снижения интенсивности этого процесса эквивалентно удвоению выброса углекислого газа в атмосферу в результате сжигания полезных ископаемых. Кроме того, ультрафиолетовая радиация подавляет продукцию фитопланктоном диметилсульфида, играющего важную роль в формировании облачности. Последние два феномена могут вызвать долговременные изменения глобального климата и уровня Мирового океана. Из биообъектов вторичных звеньев водных пищевых цепей ультрафиолетовое излучение способно непосредственно поражать икру и мальков рыб, личинки креветок, устриц и крабов, а также других мелких животных. В условиях истощения стратосферного озона прогнозируется рост и гибель мальков промысловых рыб и, кроме того, снижение улова в результате уменьшения первичной продуктивности Мирового океана. В отличие от водных организмов, высшие растения могут частично адаптироваться к увеличению интенсивности естественной ультрафиолетовой радиации, однако в условиях 10-20%-й редукции озонового слоя у них наблюдается торможение роста, уменьшение продуктивности и изменения состава, снижающие пищевую ценность. Чувствительность к ультрафиолетовой радиации может существенно различаться как у растений разных видов, так и у разных линий одного вида. Культуры, районированные в южных регионах, более резистентные по сравнению с районированными в зонах умеренного климата. Очень важную, хотя и посредственную, роль в формировании продуктивности сельскохозяйственных растений играют почвенные микроорганизмы, оказывающие значительное влияние на плодородие почв. В этом смысле особый интерес представляют фототрофные цианобактерии, обитающие в самых верхних слоях почв и способные утилизировать азот воздуха с последующим использованием его растениями в процессе фотосинтеза. Эти микроорганизмы (особенно на рисовых полях) подвергаются непосредственному воздействию ультрафиолетовой радиации. Радиация способна инактивировать ключевой фермент ассимиляции азота - нитрогеназу. Таким образом, в результате разрушения озонового слоя следует ожидать уменьшение плодородия почв. Весьма вероятным является также вытеснение и отмирания других полезных форм почвенных микроорганизмов, чувствительных к ультрафиолетовой радиации, и размножением устойчивых форм, часть которых может оказаться патогенными. Для человека естественная ультрафиолетовая радиация фактором риска уже при существующем состоянии озонового слоя. Реакции на ее воздействие разнообразны и противоречивы. Некоторые из них (образование витаминами Д, увеличение общей неспецифической резистентности, лечебный эффект при некоторых кожных заболеваниях) улучшает состояние здоровья, другие (ожоги кожи и глаз, старение кожи, катаракто- и канцерогенез) ухудшают его. Типичной реакцией на переоблучение глаз является возникновение фотокератоконьюнктивита - острого воспаления наружных оболочек глаза (роговицы и конъюнктивы). Он обычно развивается в условиях интенсивного отражения солнечного света от естественных поверхностей (снежное высокогорье, арктические и пустынных зоны) и сопровождается болевыми ощущениями или ощущением постороннего тела в глазу, слезотечением, светобоязнью и спазмом век. Ожог глаз можно получить за 2 часа в заснеженных зонах и за 6 - 8 часов в песчаной пустыне. Длительное воздействие ультрафиолетовой радиации на глаз может вызвать возникновение катаракты, дегенерацию роговицы и сетчатки, птеригий (разрастание ткани конъюнктивы) и меланому сосудистой оболочки глаза. Хотя все эти заболевания очень опасны, чаще других встречается катаракта, обычно развивающаяся без видимых изменений роговицы. Увеличение частоты катаракт считают основным следствием разрушения стратосферного озона по отношению к глазу. В результате переоблучения кожи развивается асептическое воспаление, или эритема, сопровождающаяся помимо болевых ощущений изменениями тепловой и сенсорной чувствительности кожи, угнетением потоотделения и ухудшением общего состояния. В умеренных широтах эритему можно получить за полчаса на открытом солнце в середине летнего дня. Обычно эритема развивается с латентным периодом 1 - 8 часов и сохраняется около суток. Величина минимальной эритемной дозы растет с увеличением степени пигментации кожи. Важный вклад в канцерогенный эффект ультрафиолетовой радиации вносит ее иммуносупрессивное действие. Из 2-х существующих типов иммунитета - гуморального и клеточного лишь последний подавляется в результате воздействия ультрафиолетовой радиации. Факторы гуморального иммунитета либо остаются индифферентными, либо в случае хронического облучения в малых дозах активируются, способствуя повышению общей неспецифической резистентности. Помимо снижения способности отторгать раковые клетки кожи (агрессивность против других типов раковых клеток не изменяется) индуцированная ультрафиолетовой радиацией иммуносупрессия может подавлять кожные аллергические реакции, снижать резистентность к инфекционным агентам, а также изменять характер протекания и исход некоторых инфекционных заболеваний. В результате разрушения стратосферного озона следует ожидать снижения сопротивляемости населения ряду инфекционных заболеваний. Как минимум, в их число необходимо включить болезни с кожной фазой развития или зависящие от клеточного иммунитета: корь, ветряная оспа, герпес и другие вирусные заболевания с кожной сыпью, индуцируемые через кожу паразитарные болезни типа малярии и лейшманиоза, а также зависящие от клеточного иммунитета туберкулез и некоторые грибковые заболевания. Естественная ультрафиолетовая радиация ответственна за основную часть опухолей кожи, частота которых у белого населения близка к суммарной частоте опухолей всех других типов, вместе взятых. Существующие опухоли подразделяются на два вида: немеланомные (базальноклеточный и плоскоклеточный раки) и злокачественную меланому. Опухоли первого вида преобладают количественно, Слабо метастазируют и легко излечиваются. Частота меланом относительно не велика, однако они быстро растут, рано метастазируют и дают высокую смертность. Так же как и для эритемы, для рака кожи характерна четкая обратная корреляция между эффективностью облучения и степенью пигментатированности кожи. Частота опухолей кожи у негритянского населения более чем в 60 раз, у латиноамериканского - в 7 - 10 раз ниже, чем у белого населения в той же широтной зоне при практически одинаковой частоте опухолей, отличных от рака кожи. Помимо степени пигментатированности, факторами риска для возникновения рака кожи являются наличие родинок, пигментных пятен и веснушек, слабая способность к загару, голубой цвет глаз и рыжий цвет волос. Ультрафиолетовая радиация играет важную роль в обеспечении организма витамина Д, регулирующим процесс фосфорно-кальциевого обмена. Дефицит витамина Д вызывает рахит и кариес, а также играет важную роль в патогенезе представительной железы, дающей высокую смертность. Роль ультрафиолетового излучения в обеспечении организма витамином Д нельзя компенсировать лишь за счет потребления его с пищей, поскольку процесс биосинтеза витамина Д в коже является саморегулирующимся и исключает возможность возникновения гипервитаминоза. Это заболевание вызывает отложения кальция в различных тканях организма с их последующим некротическим перерождением. При возникновении дефицита витамина Д необходима доза ультрафиолетовой радиации, составляющая примерно 60 минимальных эритемных доз в год на открытые участки тела. Для белого населения в умеренных широтах это соответствует ежедневному пребыванию на открытом солнце по полчаса в середине дня с мая по август. Интенсивность синтеза витамина Д убывает с увеличением степени пигментативности, у представителей различных этнических групп может различаться более чем на порядок. Вследствие этого пигментация кожи может быть причиной недостаточности витамина Д у цветных иммигрантов в умеренных и северных широтах. Наблюдающиеся в настоящее время увеличение степени истощения озонового слоя свидетельствует о недостаточности предпринимаемых усилий по его защите. |