Закон Ома. История открытия. Различные виды закона Ома
Скачать 251.63 Kb.
|
Министерство сельского хозяйства Российской Федерации федеральное государственное бюджетное образовательное учреждение Высшего образования «Мичуринский государственный аграрный университет» Кафедра математики, физики и информационных технологий Дисциплина: Физика РЕФЕРАТ Тема:Закон Ома. История открытия. Различные виды закона Ома. Выполнила: студентка 1 курса Инженерного института группы ИОБ16ИВТ Беков Бежан Бехрузович Проверил: Леопольд Викторович Брижанский Мичуринск – 2021 ОГЛАВЛЕНИЕ Исторический очерк. Краткая биография Г.С. Ома..........................................................................4 История открытия закона Ома ......................................................................5 Закон Ома. Общий вид закона Ома ..................................................................................8 Экспериментальный стенд ..........................................................................10 Виды законов Ома Различные виды законаОма Заключение.............................................................................................11 Список первоисточников......................................................................12 Введение Электричество давно проникло во все сферы нашей жизни. Поэтому изучение законов, связанных с ним, является насущной потребностью для каждого современного человека. Целью данной работы является исследование закона Ома и демонстрация его действия на собранном мною стенде. Напряжение, сила тока и сопротивление – физические величины, характеризующие явления, происходящие в электрических цепях. Эти величины связаны между собой. Эту связь впервые изучил немецкий физик Ом. 2 . Исторический очерк 2.1. Краткая биография Г.С. Ома. Георг Симон Ом родился 16 мая 1787 года в немецком Эрлангене (тогда часть Священной Римской империи). Мать Георга, Элизабет Мария, происходила из семьи портного, она умерла при родах, когда Георгу исполнилось девять лет. О тец его — слесарь Иоганн Вольфганг, весьма развитый и образованный человек, с детства занимался образованием сына, и самостоятельно преподавал ему математику, физику и философию. Он отправил Георга учиться в гимназию, которая курировалась университетом. По окончании курса в 1805 году Ом начал изучать математические науки в Эрлангенском университете. Уже после трёх семестров в 1806 году, бросив университет, принял место учителя в монастыре Готштадт (ныне в составе швейцарской коммуны Орпунд). В 1809 покинул Швейцарию и, поселившись в Нейенбурге, всецело посвятил себя изучению математики. В 1811 году вернулся в Эрланген, уже в том же году сумел закончить университет, защитить диссертацию и получить учёную степень доктора философии. Более того, ему тут же была предложена в университете должность приват-доцента кафедры математики. В этом качестве он проработал до 1813 года, когда принял место преподавателя математики в Бамберге (1813—1817), откуда перешёл на такую же должность в Кёльне (1817—1826). Во время пребывания в Кёльне Ом опубликовал свои знаменитые работы по теории гальванической цепи. Целый ряд неприятностей заставил его в 1826 году покинуть должность (по личному указанию министра образования был уволен с работы в школе за публикацию в газетах своих открытий в области физики). В течение 6 лет, несмотря на весьма стеснённые обстоятельства, Ом посвящает себя исключительно научным работам и лишь в 1833 году принимает предложение занять должность профессора физики в политехнической школе в Нюрнберге. В 1842 году становится членом Лондонского королевского общества. В 1849 году Ом, уже весьма известный, приглашён профессором физики в Мюнхен и назначен там же консерватором физико-математических коллекций академии наук. Он остается здесь до своей смерти, последовавшей (от удара) 6 июля 1854 года. Похоронен на Старом южном кладбище. В Мюнхене в 1892 году воздвигли памятник Ому, а в 1881 году на международном конгрессе электриков в Париже решено было назвать его именем теперь общепринятую единицу электрического сопротивления («один ом»). 2.2. История открытия закона Ома. Ученый начал свои экспериментальные исследования с определения относительных величин проводимости различных проводников. Применив метод, который стал теперь классическим, он подключал последовательно между двумя точками цепи тонкие проводники из различных материалов одинакового диаметра и изменял их длину так, чтобы получалась определенная величина тока. Уже в своих первых опытах Ом заметил, что магнитное действие тока при замыкании цепи произвольной проволокой уменьшается со временем... Силу тока он измерял с помощью своего рода крутильных весов, образуемых магнитной стрелкой, подвешенной на металлической нити. Когда ток, параллельный стрелке, отклонял ее, Ом закручивал нить, на которой она была подвешена, пока стрелка не оказывалась в своем обычном положении; сила тока считалась пропорциональной углу, на который закручивалась нить. Условия опыта менялись: заменялись сопротивления и термоэлектрические пары, но результаты все равно сводились к формуле, которая очень просто переходит в известную нам. Ом проводит опыты и с четырьмя латунными проволоками - результат тот же. «Отсюда следует важный вывод, - пишет Кошманов, - что найденная Омом формула, связывающая физические величины, характеризующие процесс протекания тока в проводнике, справедлива не только для проводников из меди. По этой формуле можно рассчитывать электрические цепи независимо от материала проводников, используемых при этом... В последующих опытах Ом изучал влияние температуры проводников на их сопротивление. Он вносил исследуемые проводники в пламя, помещал их в воду с толченым льдом и убеждался, что электрическая проводимость проводников уменьшается с повышением температуры и увеличивается с понижением ее». Появляется в свет знаменитая статья Ома «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера», вышедшая в 1826 году в «Журнале физики и химии». Появление статьи, содержащей результаты экспериментальных исследований в области электрических явлений, не произвело впечатления на ученых. Никто из них даже не мог предположить, что установленный Омом закон электрических цепей представляет собой основу для всех электротехнических расчетов будущего. В 1827 году в Берлине он опубликовал свой главный труд «Гальваническая цепь, разработанная математически». Ом вводит понятия и точные определения электродвижущей силы, или «электроскопической силы», по выражению самого ученого, электропроводности и силы тока. Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи. Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом. Ом стал лишь вторым ученым Германии, удостоенным такой чести. 3. ЗАКОН ОМА 3.1. Общий вид закона Ома. Закон Ома звучит так: Сила тока на участке цепи прямо пропорциональна напряжению на этом участке (при заданном сопротивлении) и обратно пропорциональна сопротивлению участка (при заданном напряжении): I = U / R, из формулы следует, что U = I*R и R = U / I. Так как сопротивление данного проводника не зависит ни от напряжения, ни от силы тока, то последнюю формулу надо читать так: сопротивление данного проводника равно отношению напряжения на его концах к силе протекающего по нему тока. В электрических цепях чаще всего проводники (потребители электрической энергии) соединяются последовательно (например, лампочки в елочных гирляндах) и параллельно (например, домашние электроприборы). (рис. 1) При последовательном соединении сила тока в обоих проводниках (лампочках) одинакова: I = I1 = I2, напряжение на концах рассматриваемого участка цепи складывается из напряжения на первой и второй лампочках: U = U1 + U2. Общее сопротивление участка равно сумме сопротивлений лампочек R = R1 + R2. Итак, Закон Ома устанавливает зависимость между силой токаI в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника: (1) Коэффициент пропорциональности R, зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника. 3.2. Экспериментальный стенд. На собранном мною стенде можно наглядно продемонстрировать действие закона Ома. В ращая ручку включённого в электрическую цепь переменного сопротивления (резистора), мы сначала уменьшаем его сопротивление. При этом, согласно формуле, сила тока в цепи соответственно увеличивается: стрелка амперметра отклоняется вправо, лампочка начинает светить ярче. Вращая ручку резистора в противоположном направлении, мы увеличиваем его сопротивление. В результате сила тока в цепи начинает уменьшаться: стрелка амперметра отклоняется влево, а яркость лампочки уменьшается. 3.3.Виды законов Ома 3.4.Различные виды законаОма Закон Ома устанавливает зависимость между силой токаI в проводнике и разностью потенциалов (напряжением) U между двумя фиксированными точками (сечениями) этого проводника: (1) К оэффициент пропорциональности R, зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением данного участка проводника. Закон Ома был открыт в 1826 нем. физиком Г. Омом. Георг Симон Ом родился 16 марта 1787 года в Эрлангене, в семье потомственного слесаря. После окончания школы Георг поступил в городскую гимназию. Гимназия Эрлангена курировалась университетом. Занятия в гимназии вели четыре профессора. Георг, закончив гимназию, весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета. Проучившись три семестра, он принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта. В 1811 году он возвращается в Эрланген, заканчивает университет и получает степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета. В 1812 году Ом был назначен учителем математики и физики школы в Бамберге. В 1817 году он публикует свою первую печатную работу, посвященную методике преподавания "Наиболее оптимальный вариант преподавания геометрии в подготовительных классах". Ом занялся исследованиями электричества. В основу своего электроизмерительного прибора Ом заложил конструкцию крутильных весов Кулона. Результаты своих исследований Ом оформил в виде статьи под названием "Предварительное сообщение о законе, по которому металлы проводят контактное электричество". Статья была опубликована в 1825 году в "Журнале физики и химии", издаваемом Швейггером. Однако выражение, найденное и опубликованное Омом, оказалось неверным, что стало одной из причин его длительного непризнания. Приняв все меры предосторожности, заранее устранив все предполагаемые источники ошибок, Ом приступил к новым измерениям. Появляется в свет его знаменитая статья "Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера", вышедшая в 1826 году в "Журнале физики и химии". В мае 1827 года "Теоретические исследования электрических цепей" объемом в 245 страниц, в которых содержались теперь уже теоретические рассуждения Ома по электрическим цепям. В этой работе ученый предложил характеризовать электрические свойства проводника его сопротивлением и ввел этот термин в научный обиход. Ом нашел более простую формулу для закона участка электрической цепи, не содержащего ЭДС: "Величина тока в гальванической цепи прямо пропорциональна сумме всех напряжений и обратно пропорциональна сумме приведенных длин. При этом общая приведенная длина определяется как сумма всех отдельных приведенных длин для однородных участков, имеющих различную проводимость и различное поперечное сечение". В 1829 году появляется его статья "Экспериментальное исследование работы электромагнитного мультипликатора", в которой были заложены основы теории электроизмерительных приборов. Здесь же Ом предложил единицу сопротивления, в качестве которой он выбрал сопротивление медной проволоки длиной 1 фут и поперечным сечением в 1 квадратную линию. В 1830 году появляется новое исследование Ома "Попытка создания приближенной теории униполярной проводимости". Только в 1841 году работа Ома была переведена на английский язык, в 1847 году - на итальянский, в 1860 году - на французский. 16 февраля 1833 года, через семь лет после выхода из печати статьи, в которой было опубликовано его открытие, Ому предложили место профессора физики во вновь организованной политехнической школе Нюрнберга. Ученый приступает к исследованиям в области акустики. Результаты своих акустических исследований Ом сформулировал в виде закона, получившего впоследствии название акустического закона Ома. Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское общество наградило Ома золотой медалью и избрало своим членом. В 1845 году его избирают действительным членом Баварской академии наук. В 1849 году ученого приглашают в Мюнхенский университет на должность экстраординарного профессора. В этом же году он назначается хранителем государственного собрания физико-математических приборов с одновременным чтением лекций по физике и математике. В 1852 году Ом получил должность ординарного профессора. Ом скончался 6 июля 1854 года. В 1881 году на электротехническом съезде в Париже ученые единогласно утвердили название единицы сопротивления - 1 Ом. В общем случае зависимость междуIи U нелинейна, однако на практике всегда можно в определенном интервале напряжений считать её линейной и применять закон Ома; для металлов и их сплавов этот интервал практически неограничен. Закон Ома в форме (1) справедлив для участков цепи, не содержащих источников ЭДС. При наличии таких источников (аккумуляторов, термопар, генераторов и т. д.) закон Ома имеет вид: (2) где — ЭДС всех источников, включённых в рассматриваемый участок цепи. Для замкнутой цепи закон Ома принимает вид: (3) где - полное сопротивление цепи, равное сумме внешнего сопротивления r и внутреннего сопротивления источника ЭДС. Обобщением закона Ома на случай разветвлённой цепи является правило 2-е Кирхгофа. Закон Ома можно записать в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное. электрическое поле напряжённости Е, создаваемое в проводниках микроскопическими зарядами (электронами, ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т. к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках ЭДС и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряженностьюEСТ, называемого сторонним. Полная напряженность поля, действующего внутри проводника на заряды, в общем случае равна E+EСТ. Соответственно, дифференциальный закон Ома имеет вид: или , (4) где - удельное сопротивление материала проводника, а - его удельная электропроводность. Закон Ома в комплексной форме справедлив также для синусоидальных квазистационарных токов: (5) где z - полное комплексное сопротивление: , r– активное сопротивление, а x - реактивное сопротивление цепи. При наличии индуктивности L и емкости С в цепи квазистационарного тока частоты . Существует несколько видов закона Ома. Закон Ома для однородного участка цепи (не содержащего источника тока): сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника: Закон Ома для замкнутой цепи: сила тока в замкнутой цепи равна отношению ЭДС источника тока к суммарному сопротивлению всей цепи: где R - сопротивление внешней цепи, r – внутреннее сопротивление источника тока. R - + R Закон Ома для неоднородного участка цепи (участка цепи с источником тока): R ; где - разность потенциалов на концах участка цепи, - ЭДС источника тока, входящего в участок. Способность вещества проводить ток характеризуется его удельным сопротивлением либо проводимостью . Их величина определяется химической природой вещества и условиями, в частности температурой, при которых оно находится. Для большинства металлов удельное сопротивление растет с температурой приблизительно по линейному закону: ; где — удельное сопротивление при 0°С, t — температура по шкале Цельсия, а — коэффициент, численно равный примерно 1/273. Переходя к абсолютной температуре, получаем При низких температурах наблюдаются отступления от этой закономерности. В большинстве случаев зависимость от T следует кривой 1 на рисунке. 4. Заключение О значении исследований Ома хорошо сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году: "Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы, Ом вырвал у природы так долго скрываемую ею тайну и передал ее в руки современников". 5. Список ПЕРВОИСТОЧНИКОВ Александр Перышкин.Физика. 8 класс. Учебник. ДРОФА, 2017. http://www.allbest.ru/ http://worldofschool.ru «Википедия» Прохоров А. М. Физический энциклопедический словарь, М., 1983 Дорфман Я. Г. Всемирная история физики. М., 1979 Ом Г. Определение закона, по которому металлы проводят контактное электричество. – В кн.: Классики физической науки. М., 1989 Роджерс Э. Физика для любознательных, т. 3. М., 1971 Орир Дж. Физика, т. 2. М., 1981 Джанколи Д. Физика, т. 2. М., 1989 |