Главная страница

Практическая работа по информатике Переводы целых чисел из одной СС в другую. 1 Переводы целых чисел из одной СС в другую. Занятие 1 Переводы целых чисел из одной сс в другую. Арифметические операции в позиционных системах счисления


Скачать 69.17 Kb.
НазваниеЗанятие 1 Переводы целых чисел из одной сс в другую. Арифметические операции в позиционных системах счисления
АнкорПрактическая работа по информатике Переводы целых чисел из одной СС в другую
Дата14.03.2022
Размер69.17 Kb.
Формат файлаdocx
Имя файла1 Переводы целых чисел из одной СС в другую.docx
ТипЗанятие
#395795

Практическое занятие №1

Переводы целых чисел из одной СС в другую.

Арифметические операции в позиционных системах счисления.
Цель: усвоить совокупность приемов и правил, по которым числа записываются и читаются, показать развернутую запись числа.

Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число.

Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.
Целые числа в любой системе счисления порождаются с помощью Правила счета:

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя это правило, запишем первые десять целых чисел

  • в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

  • в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

  • в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

  • восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Заполним следующую таблицу:

Осно

вание

Запись чисел в системе счисления

10





























































2





























































8





























































16































































Проверим:

Осно

вание

Запись чисел в системе счисления

10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

10000

10001

10010

10011

8

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

16

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13



Развернутая запись числа.

Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2+ ... + a1 q1 + a0 q0 + a-1 q-1 + ... + a-m q-m,

где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

Например:



Вещественными числами (в отличие от целых) в компьютерной технике называются числа, имеющие дробную часть.

При их написании вместо запятой принято писать точку. Так, например, число 5 — целое, а числа 5.1 и 5.0 — вещественные.

Для удобства отображения чисел, принимающих значения из достаточно широкого диапазона (то есть, как очень маленьких, так и очень больших), используется форма записи чисел с порядком основания системы счисления. Например, десятичное число 1.25 можно в этой форме представить так:

1.25*100 = 0.125*101 = 0.0125*102 = ... ,

или так:

12.5*10–1 = 125.0*10–2 = 1250.0*10–3 = ... .

Любое число N в системе счисления с основанием q можно записать в виде N = M * qp, где M называется мантиссой числа, а p — порядком. Такой способ записи чисел называется представлением с плавающей точкой.

Если “плавающая” точка расположена в мантиссе перед первой значащей цифрой, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается запись максимального количества значащих цифр числа, то есть максимальная точность представления числа в машине. Из этого следует:

Мантисса должна быть правильной дробью, первая цифра которой отлична от нуля: M из [0.1, 1).

Такое, наиболее выгодное для компьютера, представление вещественных чисел называется нормализованным.

Мантиссу и порядок q-ичного числа принято записывать в системе с основанием q, а само основание — в десятичной системе.

Примеры нормализованного представления:

Десятичная система                 Двоичная система

753.15 = 0.75315*103;          -101.01 = -0.10101*211 (порядок 112 = 310)

-0.000034 = -0.34*10-4;         -0.000011 = 0.11*2-100 (порядок -1002 = -410)

Перевод чисел из одной системы счисления в другую
Рассмотрим только те системы счисления, которые применяются в компьютерах — десятичную, двоичную, восьмеричную и шестнадцатеричную.

Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую.

Сводная таблица переводов целых чисел


Как производятся арифметические операции в позиционных системах счисления?


Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение


Таблицы сложения легко составить, используя Правило Счета.

Сложение в двоичной системе



Сложение в восьмеричной системе




Сложение в шестнадцатеричной системе



При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.





Шестнадцатеричная: F16+616



 

Ответ: 15+6 = 2110 = 101012 = 258 = 1516.

Проверка. Преобразуем полученные суммы к десятичному виду:
101012 = 24 + 22 + 20 = 16+4+1=21,
258 = 2*81 + 5*80 = 16 + 5 = 21,
1516 = 1*161 + 5*160 = 16+5 = 21.


Пример 2. Вычтем единицу из чисел 102, 108 и 1016





Пример 3. Вычтем число 59,75 из числа 201,25.









Ответ: 201,2510 – 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816.

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,12 = 27 + 23 + 22 + 20 + 2–1 = 141,5;
215,48 = 2*82 + 1*81 + 5*80 + 4*8–1 = 141,5;
8D,816 = 8*161 + D*160 + 8*16–1 = 141,5.



Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе



Умножение в восьмеричной системе



Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.
Пример 4. Перемножим числа 5 и 6.





Ответ: 5*6 = 3010 = 111102 = 368.

Проверка. Преобразуем полученные произведения к десятичному виду:
111102 = 24 + 23 + 22 + 21 = 30;
368 = 3•81 + 6•80 = 30.
Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.
Пример 5. Разделим число 30 на число 6.





Ответ: 30 : 6 = 510 = 1012 = 58.
Вывод: Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система.


написать администратору сайта