Главная страница

курсовая компрессор. курсовая1. 1. 1 Описание технологического процесса компрессорной установки


Скачать 234.67 Kb.
Название1. 1 Описание технологического процесса компрессорной установки
Анкоркурсовая компрессор
Дата13.11.2022
Размер234.67 Kb.
Формат файлаdocx
Имя файлакурсовая1.docx
ТипРеферат
#785925

Содержание

1 ОСНОВНАЯ ЧАСТЬ

1.1 Описание технологического процесса компрессорной установки

1.2 Характеристика компрессорной установки в автоматизации

1.3 Описание технологического обслуживания компрессорной установки в автоматизации

2 Расчетная часть

3 Заключение

Список используемых источников

Введение

В основном, компрессорные установки являются неотъемлемой составной частью большинства промышленных и общественных комплексов (химических, нефтеперерабатывающих, газовых, автомобильных, научно-исследовательских). Основная задача КУ – бесперебойное обеспечение объекта газовой смесью с заранее установленными параметрами. Следовательно отказ КУ приводит к простою всего комплекса или, как минимум, его большую часть, а это колоссальные убытки. Снижение расходов на обслуживание и продление межремонтного срока, а также упрощение диагностики неполадок в совокупности с повышением надежности, позволяет говорить о значительной выгоде связанной с применением новой системы управления вместо традиционной при модернизации существующих станций.

КУ требует постоянного контроля со стороны обслуживающего технического персонала, и предусматривает сохранение нормативных показателей работы основных узлов. Однако нестабильность нагрузки, которой подвергается КУ, приводит сокращению как общих часов наработки, так и межремонтных сроков эксплуатации оборудования. Внедрение новой линейки управляющих средств, так и исполнительных механизмов позволило значительно улучшить показатели надежности, ремонтопригодности и экономической выгоды КУ. В основном, применялось оборудование из семейства, прошедшего тестирование на подобных агрегатах и показавших себя наилучшим образом, с расширенными функциональными возможностями (расширение основной платформы интегрированных модулей, наличие сетевых узлов, оптимизация и упрощение программных компонентов), приемлемыми показателями точности измерений.

1 ОСНОВНАЯ ЧАСТЬ

1.1 ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА КОМПРЕССОРНОЙ УСТАНОВКИ И УСЛОВИЯ ИСПОЛЬЗОВАНИЯ

Компрессорная установка -это совокупность устройств, необходимых для получения сжатого воздуха или другого газа. К. у. бывают стационарные и передвижные. В стационарных К. у. используют одноступенчатое или многоступенчатое сжатие воздуха. Основные элементы стационарной К. у. с одноступенчатым сжатием воздуха: фильтр, Компрессор, двигатель, воздухопровод. Кроме того, в К. у. входят вентили и задвижки, измерительные приборы (манометры, термометры и др.), предохранительные и обратные клапаны, а также приборы автоматики, сигнализации и управления. В К. у. с многоступенчатым сжатием входят промежуточные воздухоохладители. Основные агрегаты К. у. имеют циркуляционную систему смазки, подаваемой шестерённым насосом через фильтр и маслоохладитель. Одна или несколько стационарных К. у. вместе со зданием, в котором они размещены, составляют сооружение, называемое компрессорной станцией. Передвижные К. у. обычно монтируются на автоприцепе или автомобильном шасси. Они состоят из компрессора (обычно поршневого с воздушным охлаждением), двигателя внутреннего сгорания, а также воздухозаборника с фильтром и небольшого резервуара (ресивера), к которому присоединены несколько прорезиненных шлангов для подачи сжатого воздуха к потребителям (например, пневматическим инструментам).

Для привода компрессоров в К. у. используют электрические двигатели, двигатели внутреннего сгорания (в том числе газотурбинные) и паровые турбины.

К. у. обслуживают доменные и сталелитейные цехи, машиностроительные заводы, строительные площадки, предприятия горнорудной, нефтеперерабатывающей и химической промышленности, газопроводы природного газа и др.





Схема 1.компрессорной установки: 1 — воздушный фильтр; 2 — всасывающий воздухопровод; 3 — напорный бак; 4 — трубопровод для воды; 5 — компрессор; 6 — влагомаслоотделитель; 7 — воздухопровод; 8 — воздухосборник; 9 — насос для подачи охлаждающей воды.

УСЛОВИЯ ИСПОЛЬЗОВАНИЯ

Компрессорные установки, в которых получают сжатый воздух, могут быть стационарными и передвижными. Стационарные установки отличаются большей мощностью и обеспечивают лучшую очистку сжатого воздуха.



Рис. 2. Схема компрессорной установки

Компрессорная установка, схема которой показана на рис. 2, состоит из всасывающего воздуха с фильтром 1; компрессора 2, где происходит сжатие воздуха, с двигателем; промежуточного 3 и концевого 4 холодильников, предназначенных для охлаждения сжатого воздуха; воздухосборника или ресивера 7; предохранительных клапанов 8 и 9 и вентилей для продувки 5 и 6. Для обеспечения надежности и безопасной эксплуатации компрессорная установка имеет необходимую арматуру и контрольно-измерительные приборы и устройства.

Помещения для установки компрессоров выбирают просторными, сухими, светлыми и хорошо вентилируемыми. Компрессоры производительностью выше 15 м3/мин устанавливаются в отдельных одноэтажных зданиях. Забор воздуха для сжатия, как правило, следует производить снаружи здания и лучше всего с северной стороны, так как в этом случае засасываемый воздух более прохладный. При выборе места забора воздуха следует проверить, нет ли поблизости цехов, выделяющих большое количество газов и пылей, а также направление господствующих ветров. Приемное отверстие всасывающего воздухопровода располагают на высоте 1,25—1,5 м от уровня земли и затягивают медной сеткой, а сверху устраивают защитный козырек от возможных попаданий атмосферных осадков и случайных предметов.

Неправильное устройство компрессорных установок и неудовлетворительная их эксплуатация могут вызвать взрывы и аварии отдельных их частей с возможными тяжелыми последствиями. Непосредственными причинами аварий и взрывов компрессорных установок, как показывает практика, могут быть следующие: чрезмерное повышение температуры сжатого воздуха и перегревание частей компрессорной установки; пыльность и влажность засасываемого воздуха; разряды статического электричества; быстрое повышение давления воздуха в компрессорной установке выше допустимого; неправильный монтаж компрессорной установки; неправильная эксплуатация установки и неудовлетворительный уход за ней.

Сжатие воздуха в компрессоре без применения охлаждения сопровождается неизбежным повышением температуры сжимаемого воздуха, что приводит к нагреванию частей компрессора. При высоких температурах возможен перегрев стенок цилиндра компрессора и потеря ими механической прочности, что может вызвать взрыв компрессора. Кроме этого, при обильной смазке цилиндра компрессора и высокой температуре сжатого воздуха масло пригорает к внутренним стенкам цилиндра и попадает в воздуховоды и аккумуляторы компрессорной установки. Под действием высокой температуры сжатого воздуха смазочное масло разлагается с выделением газов и паров (в частности, ацетилена), которые в смеси с воздухом могут сгорать со взрывом. На внутренних поверхностях воздухопроводов может также образоваться окисная пленка масла. Образование окисных соединений грозит взрывом при нагреве, ударе или сотрясении.

Основным предупредительным мероприятием против перегрева является охлаждение компрессора, которое может быть воздушным и водяным. Воздушное охлаждение применяется в том случае, когда давление сжатого воздуха не превышает 2 кгс/см2; водяное — при более высоких давлениях сжатия.

Водяное охлаждение заключается в непрерывной принудительной циркуляции холодной воды в рубашке цилиндра компрессора — от системы водопровода или специального охладительного устройства. При этом температура воды, выходящей из компрессора, должна быть не более чем на 25—30° С выше температуры воды, поступающей в компрессор. Водяное охлаждение должно работать непрерывно. Для наблюдения за действием водяного охлаждения воду из водяной рубашки компрессора следует выпускать в канализацию открытой струей на видном месте.

Для своевременного обнаружения перебоев в работе охладительной системы необходимо оборудовать автоматически действующую сигнализацию, используя контактный термометр, который при повышении температуры сжимаемого воздуха дает сигнал (звуковой или световой) о ненормальной работе водяного охлаждения.

Водяное охлаждение при непрерывной циркуляции воды в рубашках цилиндров компрессорной установки позволяет доводить сжатие воздуха до 7 кгс/см2 без повышения температуры воздуха. Для компрессоров с двумя и более ступенями сжатия охлаждение воздуха предусматривается в каждой ступени при помощи аналогичных охлаждающих устройств. Вода, применяемая для охладительной системы, должна быть чистой и нежесткой. Загрязненная и жесткая вода может оставлять на стенках водопроводных труб и водяной рубашки охлаждаемых цилиндров осадки, которые затрудняют теплоотдачу и циркуляцию воды.

Кроме этого, необходимо принимать меры к тому, чтобы в компрессорной установке не накапливались остатки смазочного масла с пригоранием его к стенкам цилиндров и не образовывались при высокой температуре сжимаемого воздуха взрывоопасные газообразные продукты его разложения. С этой целью смазка компрессорной установки должна быть умеренной и подаваться в минимально необходимом количестве.

Смазочные масла не должны давать нагара на стенках цилиндров компрессора и иметь температуру вспышки не ниже 240° С. Во всяком случае, разница между температурой сжатого воздуха и температурой вспышки масла не должна быть меньше 75° С. Компрессорные установки регулярно продувают, при этом периодически очищают воздухосборники от масла и наслоений. Для устранения попадания смазочного масла в воздухопроводы, а затем в воздухосборник (ресивер) у начала воздухопроводной магистрали, а также на входе этой магистрали в воздухосборник устанавливают маслоотделители.

Сухой и чистый воздух, засасываемый для сжатия компрессором, является одним из важных условий безопасной его работы. Наличие пыли и влажности в сжатом воздухе может иметь ряд опасных последствий для компрессорной установки; осаждаясь вместе с влагой и парами смазочного масла на стенках цилиндров и воздуховодов, пыль разъедает их и ухудшает условия охлаждения, при этом образуется нагар на поршнях, поршневых кольцах, клапанах и других, частях компрессорной установки. Нагар и пыль могут воспламеняться со взрывом от высокой температуры сжатого воздуха или от разряда статического электричества: Влага, скапливаясь в цилиндрах компрессорной установки, может явиться причиной гидравлических ударов при движении поршней и привести к поломке частей компрессорной установки. Наличие в сжатом воздухе сухой пыли приводит к возникновению зарядов статического электричества, разряды которого вызывают воспламенение остатков смазочного масла.

Наряду с правильным выбором места забора воздуха, и оснащением заборного отверстия на заборной трубе необходимо установить фильтр для очистки воздуха от пыли. Для этой цели чаще применяют сухие фильтры, которые легче очищать от задерживаемой ими пыли. Для удаления влаги из воздуха на магистральном воздуховоде устанавливают влагоотделитель. Устранение зарядов статического электричества достигается надежным заземлением основных частей компрессорной установки: корпуса компрессора, воздуховодов и аккумулятора сжатого воздуха.

Авария компрессорной установки может произойти от быстрого повышения давления в магистральном воздуховоде, компрессора, при внезапном прекращении или резком снижении расхода сжатого воздуха. Для предупреждения аварий на компрессорных установках предусматривают предохранительные устройства — автоматические регуляторы давления и предохранительные клапаны. Одновременно на каждой ступени сжатия устанавливают манометры с указателями предельного допускаемого давления.

В современных компрессорных установках манометры нередко используют для автоматического выключения двигателя привода компрессора при резком повышении давления сжимаемого воздуха. В этом случае на манометрах устанавливают контакты, соединенные со специальными реле, которые и осуществляют выключение двигателя. Компрессорные станции с тремя машинами и более оборудуют приборами дистанционного контроля температуры и давления воздуха, воды и масла.

1.2 Характеристика компрессорной установки в автоматизации

Две основные характеристики, которые определяют тип и стоимость компрессора:

1.Производительность

2.Рабочее давление

Производительность компрессора

Производительность компрессора — это параметр, который определяет, какой объем воздуха/газа он может сжать в единицу времени.

Обычно этот параметр указывается в м3/мин, м3/час, литры/мин (это объемная производительность). Иногда указывается в кг/ч (производительность по массе).

Если мы говорим про винтовой компрессор, то его производительность обычно указывается при нормальных условиях. В поршневых компрессорах может указываться как производительность по всасыванию, так и по нагнетанию (на этом вопросе остановимся более подробно в других статьях).

Производительность компрессора определяет тип (или вид) компрессора, который будет использоваться для сжатия воздуха/газа. Также можно сказать, что производительность определяет размер компрессора, габариты камеры сжатия и габариты самого компрессора, а также потребляемую мощность всей установки в целом.

Например, компрессоры объемного действия (винтовые, поршневые, роторно-пластинчатые и т.д.) используются при расходах газа в диапазоне 0.01…60-80 нм3/мин. При более высоких расходах воздуха (от 100 нм3/мин и более) используются уже компрессоры динамического действия (центробежные или осевые).

Рабочее давление компрессора

Рабочее давление компрессора — это параметр, который определяет конечное давление сжатия компрессора или давление, с которым воздух/газ будет поступать к потребителю.

Обычно этот параметр указывается в бар, МПа или кг/см2. Также стоит отметить, что рабочее давление компрессора может быть указано избыточное (изб) или абсолютное (абс).

Бывают компрессоры низкого давления (до 1.5 МПа), среднего давления (1.5-10 МПа), высокого давления (10-100 МПа) и сверхвысокого давления (от 100 МПа)

Этот параметр также может называться «давление нагнетания компрессора».

Другие вспомогательные характеристики

Помимо производительности и рабочего давления существуют вспомогательные характеристики, которые также оказывают влияние на выбор компрессора.

Давление на входе компрессора

Давление на входе компрессора — это параметр, который также определяет тип используемого компрессора. Существуют обычные компрессоры с атмосферным давлением на входе и дожимающие компрессоры (или бустеры) с давлением воздуха/газа на входе не менее 0.1 МПа изб.

Этот параметр также называется «давление всасывания».

Потребляемая мощность

Потребляемая мощность — это характеристика, влияние на которую оказывает производительность компрессора, начальное давление и рабочее давление нагнетания.

Чем больше нужна производительность компрессора или его рабочее давление, тем больше требуется электроэнергии для сжатия воздуха/газа.

Потребляемая мощность складывается из мощности электродвигателя компрессора, мощности двигателей вентиляторов охлаждения и других устройств компрессора.



1.3 ОПИСАНИЕ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ КОМПРЕССОРНОЙ УСТАНОВКИ В АВТОМАТИЗАЦИИ

Техническое обслуживание данного (компрессора) оборудования включает в себя комплекс задач по диагностике его состояния, замене расходных материалов, регулировке механизмов. В процессе работы специалист проверяет условия эксплуатации, использует различные виды дефектоскопов для обнаружения скрытых поломок, перенастраивает блок управления.

При необходимости он производит мелкий ремонт:

  • подтяжку ременного привода,

  • герметизацию уплотнений,

  • замену клапанов, сальников и фильтров,

  • заливку масла,

  • очистку нагнетательных воздухопроводов и системы охлаждения,

  • продувку,

  • затяжку крепежных болтов.

Виды задач зависят от времени наработки и типа оборудования. Регулярное техническое обслуживание воздушных компрессоров дает возможность вовремя выявлять и устранять мелкие неисправности, отодвигая срок капитального ремонта.

Обслуживание после первых 600 часов работы

Периодичность обслуживания

Операции по обслуживанию

Ежедневно

Контроль и корректировка уровня масла

Наружный осмотр компрессора

Проверка плотности соединений воздухопроводов

Слив конденсата из ресивера

Очистка компрессора от пыли и загрязнений

После первых 8-ми часов работы

Проверка момента затяжки болтов головок цилиндров поршневого блока

После первых 50-ти часов работы

Проверка момента затяжки болтов головок цилиндров поршневого блока

Проверка натяжения ремней

После первых 100 часов работы

Замена масла

Через каждые 100 часов работы или раз в месяц

Проверка всасывающего воздушного фильтра (фильтрующего элемента)

Через каждые 300 часов работы или раз в три месяца

Замена масла

Проверка натяжения ремней

Проверка прочности крепления поршневого блока, электродвигателя, платформы

Через каждые 600 часов или раз в шесть месяцев

Замена всасывающего воздушного фильтра (фильтрующего элемента)

Через каждые 1200 часов или раз в год

Обслуживание обратного клапана

Специфика ТО компрессоров разных типов

Компания Ingersoll Rand производит как поршневые и винтовые, так и центробежные компрессоры. Оборудование этого бренда отличается высокой надежностью и длительным сроком эксплуатации, однако без своевременного техобслуживания его ресурс снижается. Проверка разных рабочих механизмов требует учета специфики каждого типа.

В процессе обслуживания поршневых компрессоров мастер проверяет прочность крепления блока и меняет изношенные кольца, а также регулирует уровень вибрации.

В безмасляных винтовых приборах чаще изнашиваются уплотнители и элементы муфты.

В диагностике состояния турбокомпрессора большую роль играет прослушивание устройства во время работы и при остановке двигателя.

Для качественного выполнения ТО специалист должен пройти профессиональную подготовку и знать особенности функционирования каждого вида компрессоров.


написать администратору сайта