Реферат. задание. 1. 1 Расчет параметров уравнений по отклонениям 7 2 Характеристика тесноты связи 10
Скачать 172.65 Kb.
|
1.3 Прогнозирование по абсолютным уровням временных рядовДля исключения автокорреляции непрерывный процесс изменения признака искусственно расчленяется на несколько этапов по числу отрезков времени, составляющих период наблюдения. На каждой стадии расчетов значения переменных рассматриваются как статические величины без учета их вероятного изменения в будущем. По исходным данным, характеризующим взаимодействие признаков в каждый данный момент времени, строятся уравнения множественной регрессии ytc=a0t+a1tx1t+a2tx2t+…+ aptxpt либо y)t=a0txa1t1txa2t2t…xaptpt. Поскольку значения переменных x1t, х2t,...,xpt не остаются постоянными во времени, а закономерно изменяются, то множество моделей необходимо дополнить аналитическими зависимостями, отражающими тенденции варьирования показателей аргументов хit и коэффициентов регрессии аit. С этой целью коэффициенты пропорциональности объединяют во временные ряды, после чего устанавливают закономерности изменения их во времени. В общем случае уравнения регрессии имеют вид: . Аналогично определяется тенденция варьирования для каждого показателя аргумента в отдельности: . С помощью этих моделей могут быть найдены значения переменных xT1t, xT2t,...,xTpt, а также коэффициенты aT1t, aT2t,...,aTpt,. Для прогнозирования величины исследуемого признака могут использоваться регрессии вида . Зависимость может быть мультипликативной. Модели могут использоваться в динамике. Для этого в уравнение регрессии подставляются прогнозные уровни аргументов и параметров. Доверительные интервалы должны учитывать вариацию аргументов и вариацию коэффициентов регрессии. 1.4 Расширение линейной множественной регрессииВ уравнение регрессии обычно включаются переменные х, существенные с точки зрения экономической теории и принимающие значения в некотором интервале. Некоторые из них в свою очередь могут быть функциями других переменных. Например, , а xj =lgzj и т.п. Модель при этом должна оставаться линейной относительно ее параметров и удовлетворять всем свойствам, необходимым для применения обыкновенного метода наименьших квадратов. При изучении социально-экономических явлений в некоторых случаях необходимо включить в модель такие факторы, которые отражают, в том числе, различные качественные уровни. Это имеет место при существенных изменениях общих условий, при временном сдвиге, анализе атрибутивных признаков, таких, например, как пол, образование, принадлежность к социальным или профессиональным группам и т.д. Иногда это связано с потребностью изучения большого числа количественных переменных. Такие специальным образом сконструированные переменные называются фиктивными переменными. Эти переменные вводятся в модель и оцениваются, однако им должны быть присвоены при этом некие цифровые метки, осуществляющие преобразование качественных переменных в количественные. Рассмотрим пример функции спроса на кредитные услуги банков. Пусть имеет место линейная зависимость потребления таких услуг по сельским и городским домохозяйствам в зависимости от доходов. В общем виде для обследуемой совокупности уравнение регрессии имеет вид: y=a+bx+е , где y – величина обязательств (долга) по кредитам, х – доход на одного члена семьи. Аналогичные уравнения можно найти отдельно для домохозяйств на селе и в городе: y1=a1+b1x1+е1 и y2=a2+b2x2+е2. Различия обусловлены особенностями ведения домашнего хозяйства, психологией сельских и городских жителей, определяющих в конечном счете их кредитное поведение. Средние характеристики объемов обязательств городских и сельских домохозяйств y1 и у будут различными. Объединение уравнений у1 и у2 возможно с включением фиктивных переменных: y=a1z1+a2z2+bx+е, (**) где z1 и z2 – фиктивные переменные места проживания домохозяйства, такие, что: 1 – город z1= 0 – село 1 – село z1= 0 – город Зависимая переменная y в уравнении (**) является функцией не только дохода х, но и типа домохозяйства (городского или сельского) (z1, z2). Переменная z рассматривается как дихотомическая, переменная, принимающая два значения: 1 и 0. Когда z1=1, z2=0 и, наоборот, при z1=0, z2=1. Общее уравнение регрессии (**) для городского домохозяйства будет иметь вид: yс=a1+bx. Для сельского домохозяйства соответственно уравнение регрессии принимает вид: yс=a2+bx. Параметр b является общим для всей совокупности домохозяйств, а различия кредитного поведения городских и сельских семей обусловлены свободными членами уравнения регрессии. Матрица исходных данных будет иметь вид: В соответствии с приведенной матрицей первые два домохозяйства в исследуемой совокупности являются сельскими, следующее – городское, следующее – сельское и т.д., наконец, два последних из n являются городскими. Для оценки параметров уравнения может использоваться метод наименьших квадратов. Фиктивных переменных может быть введено более двух групп, что позволяет углубить исследование. В рассмотренном примере кредитное поведение домохозяйств будет зависеть, например, от объема накопленных активов, возраста главы семьи, наличия и количества детей и т.п. Пример подобного подхода приведен Дж. Джонстоном. Описано изучение динамики социально-экономических систем на основе совместного анализа социологических и некоторых других переменных с традиционными экономическими переменными. В исследовании распределения семей по признаку долга по закладным задача разбита на две части. Вначале предсказывается вероятность наличия долга, а затем для семей с ненулевым долгом предсказывается его величина. |