био. 1. Активный транспорт веществ через плазматическую мембрану. Роль в создании мембранного потенциала и регуляция внутриклеточного кальция
Скачать 0.57 Mb.
|
55.Зародышевые листки: образование, производные. Эмбриобласт расслаивается на эпибласт и гипобласт. Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск. В дальнейшем на месте двухслойного зародышего диска путем миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма, энтодерма. Из эктодермы развиваются: эпидермис кожи и его производные, компоненты органов зрения, слуха, обоняния, эпителий ротовой полости, эмаль зубов, нервная трубка, нервный гребень и образующиеся из них все нервные клетки. Производными энтодермы являются: эпителий желудка, легких и кишки, клетки печени, секреторные клетки желез. Из мезодермы формируются: скелет, скелетная мускулатура, соединительнотканная основа кожи, органы выделительной и половой систем, сердечно-сосудистая система, лимфатическая система, плевра, брюшина и перикард. 56.Гаструляция, способы гаструляции. Гаструляция – следующая за дроблением стадия эмбриогенеза, характеризующаяся появлением у клеток способности к росту и перемещению. За счет активной пролиферации, роста, направленной миграции и дифференцировки клеток бластодермы из бластулы образуются трехслойный зародыш (гаструла) с первичными зародышевыми листками: эктодермой, мезодермой, энтодермой. Обычно сначала образуется двухслойная гаструла (экто- и энтодерма). Новая формирующаяся полость (гастроцель) сообщается с внешней средой через отверстие – бластопор (первичный рот). Несколько позже образуется третий зародышевый листок - мезодерма. Клетки зародышевой мезодермы формируют дорсальную мезодерму (из которой возникают сомиты), промежуточную мезодерму (нефротом) и латеральную мезодерму (спланхнотом). Способы гаструляции: 1.Инвагинация происходит путем впячивания вегетативного полушария бластулы в бластоцель под ее анимальный полюс. 2.Эпиболия происходит путем обрастания вегетативного полюса бластулы быстро делящимися клетками анимального полюса, клетки которого в результате формируют эктодерму, а клетки вегетативного полюса – энтодерму. 3.Имиграция – выселение клеток бластодермы в бластоцель с образованием энтодермы, причем клетки, оставшиеся на месте формируют эктодерму. 4.Деламинация характеризуется расслоением бластодермы на 2 слоя клеток – будущие экто- и энтодерма. 57.Виды бластул в соотношении их с типом дробления и содержанием желтка в яйцеклетке. В результате полного равномерного дробления формируется целобластула, представляющая собой полый шар, стенка которого образована одним слоем клеток (бластодерма). Полость (бластоцель), заполненная жидкостью, занимает весь внутренний объем бластулы. Амфибластула образуется из телолецитальной яйцеклетки в результате полного неравномерного дробления. Бластодерма состоит из неодинаковых по объему бластомеров анимального (мелких клеток) и вегетативного (крупных клеток) полюсов. Бластоцель смещен к анимальному полюсу. Дискобластула представлена дисковидным скоплением клеток, отделенных щелевидной полостью (бластоцель) от нераздробившегося желтка. Образуется из резко телолецитальной яйцеклетки в результате неполного дискоидального дробления. Перибластула образуется из центролецитальной яйцеклетки в результате поверхностного неполного дробления. Стенка перибластулы состоит из одного слоя клеток, а полость заполнена нераздробившимся желтком. Стерробластула образуется обычно в результате спирального дробления. Она имеет вид плотного шара, не содержащего бластоцель. 58.Первичная эмбриональная индукция. Нейруляция и образование сомитов. Нейруляция – процесс закладки нервной системы. В результате индуцирующего влияния друг на друга зародышевых листков начинается образование новых структур. Первичная эмбриональная индукция (влияние хордомезодермы на дорсальную эктодерму) инициирует процесс первичного органогенеза с формирования нервной трубки, дающей начало нервной системе. Клетки зародышевой мезодермы выселяются из эпибласта и формируют пресомитную мезодерму, из которой возникают сомиты - симметричные парные структуры по бокам от хорды и нервной трубки. Образование сомитов происходит от головного к хвостовому концу зародыша. В каждом сомите различают склеротом, дерматом и миотом; их клетки имеют свои пути миграции и служат источником для различных структур. Стадии нейруляции: формирование нервной пластинки – приподнимание краев нервной пластинки и образование нервного желобка – появление нервных валиков – формирование нервного гребня и начало выселения из него клеток – смыкание нервных валиков с образованием нервной трубки – срастание эктодермы над нервной трубкой. 59.Морфогенез, морфогенетическое поле и морфогены. Морфогенез - формирование пространственной организации частей организма. Морфогенез осуществляется при реализации различных морфогенетических процессов. Под контролем сигнальных молекул морфогенов создается морфогенетическое поле. Клетки, занявшие определенной положение в системе развирающегося зародыша, получают позиционную информацию и приступают к выполнению программы детерминации и дифференцировки. 60.Роль гомейозистых генов в морфогенезе. Гомейозисные гены контролируют качественную спецификацию сегментов клетки. Это семейство родственных генов, содержащих гомеобокс и определяющих форму тела. Гомейозис - превращение одной части тела в другую. Гомеобокс - последовательность, состоящая из примерно 180 пар нуклеотидов. Гены, содержащие гомеобокс, кодируют ядерные клетки, регулирующие экспрессию генов, а гомеобокс кодирует ДНК-связывающую часть белка. 61.Опишите последовательность процессов, происходящих при репликации ДНК у эукариот. Какие ферменты принимают участие в репликации? Репликация ДНК – процесс синтеза молекулы ДНК на матрице родительской молекулы ДНК. 1. Специальные ферменты (ДНК-топоизомераза и ДНК-геликаза) распознают точку начала репликации и расплетают спираль ДНК, образуя репликационные V-образные вилки. 2. ДНК-полимераза движется вдоль смысловой цепочки ДНК от 5’ конца к 3’ концу (т.е. она как бы движется за штукой, которая расплетает цепочку) и прикрепляет соответствующие нуклеотиды – синтезируется новая спираль ДНК (лидирующая). 3. Вторая цепочка расположена антипараллельно первой, но ДНК-полимераза может двигаться только от 5’ к 3’ концу. Поэтому вторая цепь (отстающая) синтезируется кусочками по мере расплетения двойной цепочки ДНК (эти кусочки и есть фрагменты Оказаки!). Синтез отстающей спирали начинается с присоединения к антисмысловой цепи праймера. ДНК-полимераза же начинает синтез фрагментов, Оказаки, только после присоединения праймера. После праймеры удаляются, а на их месте достраивается цепочка ДНК с помощью ДНК-полимеразы. ДНК-лигаза завершает сшивку фрагментов, Оказаки. 62.Опишите последовательность процессов, происходящих при транскрипции у эукариот. Как называется цепь ДНК, которая участвует в транскрипции. (ДНК-матрица). Транскрипция – синтез РНК на матрице ДНК в направлении от 5’ к 3’, который осуществляет ДНК-зависимая РНК-полимераза. Стадии: Инициация: это сложный этап транскрипции, который включает в себя несколько стадий. Смысл инициации – РНК-полимераза должна найти точку на молекуле ДНК, с которой начнется транскрипция. РНК-полимераза прикрепляется к определенному сайту, который называется промотором. Промотор имеет в начале определенную последовательность нуклеотидов – точка узнавания (ТАТА-бокс – зона узнавания промотора). Для нахождения РНК-полимеразной зоны необходимы факторы инициации (белки). Каждый ген имеет такую начальную зону. Элонгация: процесс собственно синтеза РНК, для чего необходимо, чтобы фермент двигался вдоль одной оси и по мере движения происходило образование молекулы РНК. Для того, чтобы РНК-полимераза могла двигаться, необходимо расплетать нити молекулы ДНК, т.е. впереди движется фермент, который расплетает эти нити. Синтез идет только на одной нити – смысловой. Сам процесс катализируется ферментами, которые проталкивают нить РНК-полимеразы; процесс идет непрерывно, но с разной скоростью, которую можно регулировать. Терминация: это окончание синтеза РНК. Существуют специальные белки терминации. Смысл процесса: нужно отсоединить РНК-полимеразу от молекулы ДНК и тем самым блокировать синтез РНК. «Шпилька» терминации тормозит движение РНК-полимеразы, которая и застревает на этой «шпильке». Это дает время для того, чтобы присоединились факторы терминации и молекула ДНК отсоединилась. 63.Что такое Процессинг? Назовите основные посттранскрипционные модификации РНК. Процессирование про-мРНК (созревание мРНК) включает процессы сплайсинга, кэпирования 5-го конца РНК, удаление нуклеотидов на 3-м конце, образование полиаденинового хвоста. Для начала процесса трансляции, полученный транскрипт должен созреть. Экзон - смысловой, интрон - несмысловой, его нужно вырезать. Процессинг есть процесс разрезания про-мРНК с помощью ферментов для дальнейшего удаления интронов. В зонах соединения экзонов и интронов есть определенная последовательность, которая узнается своим ферментом, который отделяет экзон от интрона. Затем смысловые куски сшиваются и получается более короткая РНК, где есть только экзоны. Процесс сшивания называется сплайсингом. Существуют специальные гены, которые ускоряют (энхансеры) или замедляют (сайленсеры) эти процессы. Следующий этап - КЭПирование переднего отдела мРНК – это присоединение к 5’-концу 7-метил-гуанозина. Он не дает возможности ферментам, способным разрезать РНК, это сделать, способствует экспорту мРНК из ядра в цитоплазму и обеспечивает связывание мРНК с рибосомой. Следующий этап – полиаденилирование (проходит в 2 этапа): 1 этап - удаляются 20 нуклеотидов на 3’-конце про-мРНК до сайта инициации полиаденилирования. 2 этап – к 3’-концу присоединяются адениновые основания, образуется полиадениновый хвост, защищающий мРНК. 64.Что такое альтернативный сплайсинг? Как происходит этот процесс? Привидите пример. Альтернативный сплайсинг — процесс, позволяющий одному гену производить несколько мРНК и, соответственно, белков. В процессе созревания про мРНК (описан в предыдущем вопросе), после удаления интронов, экзоны могут быть сшиты в любой последовательности, что позволяет в дальнейшем увеличить разнообразие белковых продуктов. В процессе развития организма на определенном этапе осуществляется один вариант альтернативного сплайсинга, а на другом этапе – другой вариант. Пример: ген кальцитонина может кодировать гормон кальцитонин и относящийся к кальцитониновому гену пептид альфа. В С-клетках щитовидной железы в результате сплайсинга объединяться экзоны 1-4, которые кодируют кальцитонин. В чувствительных же нейронах процессируется мРНК, где экзон 4 отсутствует, но добавятся 5 и 6 экзоны. В результате клетки будут синтезировать уже не кальцитонин, а относящийся к кальцитониновому гену пептид альфа. 65.Перечислите свойства генетического кода и поясните значения каждого. Генетический код триплетен. 3 расположенных рядом нуклеотида несут информацию об одной аминокислоте. Таких триплетов может быть 64 (в этом проявляется избыточность генетического кода), но только 61 из них несет информацию о белке (кодоны). 3 триплета называются антикодонами, являются стоп-сигналами, на которых останавливается синтез белка. Генетический код вырожден (аминокислот 20, а кодонов 61), т.е. одну аминокислоту могут кодировать несколько кодонов (от двух до шести). Метионин и триптофан имеют по одному кодону, т.к. с них начинается синтез белка (старт-сигнал). Код однозначен – несет информацию только об одной аминокислоте. Код коллинеарен, т.е. последовательность нуклеотидов в гене соответствует последовательности аминокислот в белке. Генетический код неперекрываем и компактен – один и тот же нуклеотид не может входить в состав двух разных кодонов, считывание идет непрерывно, подряд, вплоть до стоп-кодона. В коде отсутствуют «знаки препинания». Генетический код универсален – одинаков для всех живых существ, т.е. один и тот же триплет кодирует одну и ту же аминокислоту. 66.Что такое обратная транскрипция? Каким образом этот процесс связан с развитием вирусов? ОБРАТНАЯ ТРАНСКРИПЦИЯ - это метод получения копии РНК в виде двунитевой ДНК из вируса. Методика часто используется в ГЕННОЙ ИНЖЕНЕРИИ для получения копий ИНФОРМАЦИОННОЙ РНК в виде ДНК. Достигается путем использования ФЕРМЕНТА ревертаза, который встречается в РЕТРОВИРУСАХ. Вирусы, использующие обратную транскрипцию, содержат одноцепочечную РНК или двухцепочечную ДНК. РНК-содержащие вирусы, способные к обратной транскрипции (ретровирусы, например, ВИЧ), используют ДНК-копию генома как промежуточную молекулу при репликации РНК, а содержащие ДНК (параретровирусы, например, вирус гепатита B) — РНК. В обоих случаях используется обратная транскриптаза, или РНК-зависимая-ДНК-полимераза. Ретровирусы встраивают ДНК, образующуюся в процессе обратной транскрипции, в геном хозяина, такое состояние вируса называется провирусом. Вирусы, использующие обратную транскрипцию, восприимчивы к противововирусным препаратам. 67. Опишите строение генов эукариот. Чем гены эукариот отличаются от прокариот? Ген – участок ДНК, с которого копируется РНК. Строение генов у эукариот: общепринятая модель строения гена – экзон – интронная структура. Экзон – последовательность ДНК, которая представлена в зрелой РНК. В состав гена должен входить как минимум один экзон. В среднем в гене содержится 8 экзонов. Факторы инициации и терминации транскрипции входят в состав первого и последнего экзона соответственно. Интрон – последовательность ДНК, включенная между экзонами, не входит в состав зрелой РНК. Интроны имеют определенные нуклеотидные последовательности, определяющие их границы с экзонами: на 5 конце – GU, на 3 – AG. Могут кодировать регуляторные РНК. Сигнал полиаденилирования 5 – AATAAA -3 входит в состав последнего экзона. Поли сайты защищают мРНК от деградации. 5 и 3 фланкирующие последовательности – копирование гена происходит в направлении 5 – 3 , на флангах находятся специфические сайты, ограничивающие ген и содержащие регуляторные элементы его транскрипции. Регуляторные элементы – промотор, энхансеры, сайленсеры, инсуляторы (способствуют образованию петель хромосом, ограничивающих влияние соседних регуляторных элементов). Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Гены эукариот не группируются в опероны, поэтому каждый из них имеет собственные промотор и терминатор транскрипции. 68. Назовите основные типы регуляции экспрессии генов. Опишите тип регуляции транскрипции генов на примере лактозного оперона E coli. Экспрессия гена - реализация наследственной информ., закодированной в гене, в функциональный продукт- РНК или белок. Существуют два типа регуляции экспрессии генов: позитивная и негативная. Позитивная - когда благодаря действию специфических регуляторных элементов уровень экспрессии генетической информации количественно возрастает. Негативная - уровень экспрессии благодаря действию иных регуляторных элементов понижается. Регуляция экспрессии генов осуществляется на разных уровнях: 1)Транскрипционный 2) Посттранскрипционный: а) сплайсинг б)трансляционный 3)посттрансляционный . Регуляция действия генов на примере лактозного оперона. Лактозный оперон имеется у E.Coli. она использует глюкозу, но при её отсутствии переходит на лактозу. Лактоза расщепляется на глюкозу и галактозу P lacI P O lacZ lacY lacC Строение лакоперона:1) P – промотор, который связывается с мРНК. 2) О – оператор в котором связывается белок-репрессор. 3)три структурных гена lacz, lacy, lacc. Ген lacz кодирует – β-галактозидазу. Ген lacI не входит в состав оперона. Кодирует белок-репрессор, который в активной форме связывается с О. Если в среде много глюкозы, то есть нет индуктора (лактозы ), то белок репрессор присоединяется к О и транскрипция оперона репрессируется. Если нет глюкозы, и есть лактоза, то осуществляется синтез трех продуктов оперона. Белок репрессор имеет два сайта связывания: 1)сайт узнает индуктор 2)связывается с оператором Индукция – быстрое увелечение активности фермента, за счет его синтеза под действием субстрата. Репрессия – это уменьшение активности фермента под действием субстрата. 69.В чем заключается процесс метилирования ДНК? Каковы возможные последствия для молекулы ДНК, если она метилирована по определенному гену? Метилирование ДНК — это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК. Метилирование ДНК заключается в присоединении метильной группы к цитозину в составе CpG-динуклеотида в позиции С5 цитозинового кольца. Метилированный участок ДНК становится транскрипционно неактивным. Экспрессия гена будет прерываться на стадии транскрипции. 70.Что такое сплайсинг? Как происходит этот процесс? Сплайсинг – это ЭТАП созревания РНК, во время которого экзоны сшиваются после удаления из про-мРНК интронов (для Волкова), а на самом деле это процесс созревания про-мРНК, при котором происходит удаление интронов и сшивание экзонов. В зонах соединения экзонов и интронов есть определенная последовательность, которая узнается своим ферментом, который отделяет экзон от интрона. Затем смысловые куски сшиваются и получается более короткая РНК, где есть только экзоны. 71.Опишите основные процессы, происходящие при трансляции. Трансляция – это процесс непосредственно синтеза пептида (белковой молекулы). Это считывание той информации, которую содержит в себе РНК, и ее преобразование в последовательность аминокислот в белке. Этот процесс обеспечивается рибосомой, которая состоит из рРНК, белков. Инициация (нужно собрать все молекулы, участвующие в трансляции, в единый комплекс): малая субъединица связывается с мРНК и активированными тРНК, которые доставляют аминокислоты (а/к) к рибосоме, где эти а/к присоединяются к растущей полипептидной цепи. А/к прикрепляются к малой СЕ с помощью специального сайта, содержащегося на 3’-конце тРНК (акцептор). К 5’-концу тРНК, содержащему антикодон из трех нуклеотидов, прикрепляется соответствующий кодон мРНК. Элонгация: считывание информации идет непрерывно, т.к. нет промежутков между кодонами и антикодонами. После образования пептидной связи, которое катализирует пептидилтрансфераза в большой субъединице, происходит смещение вперед (этот процесс требует затрат энергии ГТФ, осуществляется за счет ферментов). Так шаг за шагом происходит наращение пептидной цепочки. Терминация: процесс доходит до узнавания нонсенс-кодона, которому нет соответствующей тРНК. Вместо тРНК прикрепляются факторы терминации. В итоге происходит отделение малой СЕ от большой СЕ. |