Главная страница

1. Антибиотики. Классификация антибиотиков по источнику получения, способу получения, механизму, спектру и типу действия


Скачать 1.79 Mb.
Название1. Антибиотики. Классификация антибиотиков по источнику получения, способу получения, механизму, спектру и типу действия
Дата05.06.2019
Размер1.79 Mb.
Формат файлаpdf
Имя файла2_5452131906172748778.pdf
ТипДокументы
#80443
страница8 из 20
1   ...   4   5   6   7   8   9   10   11   ...   20
Для
определения
аммиака используют красную лакмусовую бумажку.
Для
многих
микроорганизмов
таксономическим
при­знаком служит способность разлагать определенные
углеводы с образованием кислот и газообразных

продуктов. Для выявления этого используют среды Гисса, со­держащие различные углеводы (глюкозу, сахарозу, мальтозу, лактозу и др.).Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».
Для обнаружения газообра­зования в жидкие среды опускают поплавки или используют полужидкие среды с
0,5% агара.
Для
того
чтобы
определить
интенсивное
кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный —при более низких значениях рН.
Гидролиз мочевины определяют по выделению аммиака
(лакмусовая бумажка) и подщелачиванию среды.
При идентификации многих микроорганизмов используют реакцию Фогеса — Проскауэра на ацетоин— промежуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свидетельствует о наличии бутандиолового брожения.
Обнаружить каталазуможно по пузырькам кислорода, которые начинают выделяться сразу же после смешивания микробных клеток с 1 % раствором перекиси водоро­да.
Для
определения
цитохромоксидазы применяют ре­активы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный растворN-диметил-р-фенилендиамина дигидро- хлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появляющемуся через 2—5 мин.
Для определения нитритовиспользуют реактив Грисса:
По­явление красного окрашивания свидетельствует о наличии нитритов.
Биохимические св-ва:способность ферментировать различные углеводы,протеалитическая
активность.образование индола,сероводорода,наличие уреазы и др ферментов и т.д.
39.Чистые культуры микроорг.Принципы и методы
выделения.
Принципы и методы выделения чистых культур бакте-
рий.
Чистой культуройназывается популяция бактерий одного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты —биовары. Биовары, различающиеся по биохимическим свойствам, называютхемоварами, по антигенным свойствам —
сероварами, по чувствительности к фагу —фаговарами.
Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называютштаммами, которые обычно обозначаются номерами или какими-либо символами. Чистые культуры бактерий в диагностических бактериологических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.
Колония представляет собойвидимое изолированное скоп- ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей морфологии, цвету и другим признакам.
Чистую культуру бактерий получаютдля проведения диагностических исследований — идентификации, которая достигается путем определения морфологических, культуральных, биохимических и других признаков микроорганизма.
Морфологические и тинкториальные признакибактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.
Культуральные свойствахарактеризуются питательными потребностями, условиями и типом роста бактерий на плот-
ных и жидких питательных средах. Они устанавливаются по морфологии колоний и особенностям роста культуры.
Биохимические признакибактерий определяются набором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической практике таксономическое значение имеют чаще всего сахаролитические и протеолитические ферменты бактерий, которые определяют на дифференциально-диагностических средах.
При идентификации бактерий до рода и вида обращают вни- мание на пигменты, окрашивающие колонии и культуральную среду в разнообразные цвета. Например, красный пигмент образуют Serratia marcescens, золотистый пигмент — Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент — Pseu-domonas aeruginosa.
Для установления биовара(хемовара, серовара, фаготипа) проводят дополнительные исследования по выялвениб соответствующего маркера – определению фермента, антигена, чувствительности к Фанам.
Методы выделения чистых культур бактерий.
Универсальным инструментомдля производства посевов является бактериальная петля. Кроме нее, для посева уколом применяют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели.
Для посевов жидких материалов наряду с петлей используют пастеровские и градуированные пипетки. Первые предварительно изготовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец капилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец закрывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.
При пересеве бактериальной культурыберут пробирку в левую руку, а правой, обхватив ватную пробкуIVиVпальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю,
набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами над г писывают, указывая дату посева и характер посевного материала (номер исследования или название культуры).
Посевы «газоном»производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды.
После инкубации посева появляется равномерный сплошной рост бактерий.
40.Этапы взаимод. вирусов с чувствит. клетками и
факторы,способные их разрушить.Формы вирусной
инфекции.
Типы взаимодействия вируса с клеткой.Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.
Продуктивный тип— завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток
(цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).
Абортивный тип— не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.
Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием
(совместная репликация).
Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса
на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.
Адсорбция.Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс.
Вирус адсорбируется на определенных участках клеточной мембраны — так называемых рецепторах. Клеточные рецепторы могут иметь разную химическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических рецепторов на поверхности одной клетки колеблется от 10 4
до 10 5
Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.
Проникновение в клетку.Существует два способа проникновения вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорбции вирусов происходят инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транс- портироваться в любом направлении в разные участки цитоплазмы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.
«Раздевание».Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего компонента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с клеточной мембраной процесс проникновения вируса в клетку сочетается с первым этапом его «раздевания». Конечными продуктами «раздевания»
являются сердцевина, нуклеокапсид или нуклеиновая кислота вируса.
Биосинтез компонентов вируса.Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.
Реализация генетической информации вируса осуществляет- ся в соответствии с процессами транскрипции, трансляции и репликации.
Формирование (сборка) вирусов.Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически «узнавать» друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей.
Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:
1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;
2. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов
(например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек
(например, вирусы гриппа);
3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;
4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина
(липиды, углеводы).
Выход вирусов из клетки.Различают два основных типа выхода вирусного потомства из клетки. Первый тип —
взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нуклеокапсиды сложно устроенных вирусов фиксируются на клеточной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячивания образуется «почка», содержащая нуклеокапсид.
Затем «почка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При таком механизме клетка может продолжительное время продуцировать вирус, сохраняя в той или иной мере свои основные функции.
Время, необходимое для осуществления полного цикла реп- родукции вирусов, варьирует от 5—6 ч (вирусы гриппа, нату- ральной оспы и др.) до нескольких суток (вирусы кори, аденовирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.
41. Принципы рациональной антибиотикотерапии.
Осложнения антибиотикотерапии, их
предупреждение.Антибиотикапрофилактика в
стоматологии.
Принципы рациональной антибиотикотерапии.
Профилактика развития осложнений состоит прежде всего в соблюдениипринципов рациональной
антибиотикотерапии (антимикробной химиотерапии):
Микробиологический принцип.До назначения препарата следует установить возбудителя инфекции и определить его индивидуальную чувствительность к антимикробным химиотерапевтическим препаратам. По результатам антибиотикограммы больному назначают препарат узкого спектра действия, обладающий наиболее выраженной активностью в отношении конкретного возбудителя, в дозе, в
2—3 раза превышающей минимальную ингибирующую
концентрацию. Если возбудитель пока неизвестен, то обычно назначают препараты более широкого спектра, активные в отношении всех возможных микробов, наиболее часто вы- зывающих данную патологию. Коррекцию лечения проводят с учетом результатов бактериологического исследования и определения индивидуальной чувствительности конкретного возбудителя (обычно через 2-3 дня). Начинать лечение инфекции нужно как можно раньше (во-первых, в начале за- болевания микробов в организме меньше, во-вторых, препараты активнее действуют на растущих и размножающихся микробов).
Фармакологический принцип.Учитывают особенности препарата — его фармакокинетику и фармакодинамику, распределение в организме, кратность введения, возможность сочетания препаратов и т. п. Дозы препаратов должны быть достаточными для того, чтобы обеспечить в биологических жидкостях и тканях микробостатические или микробоцидные концентрации. Необходимо представлять оптимальную продолжительность лечения, так как клиническое улучшение не является основанием для отмены препарата, потому что в организме могут сохраняться возбудители и может быть рецидив болезни. Учитывают также оптимальные пути введения препарата, так как многие антибиотики плохо всасываются из ЖКТ или не проникают через гематоэнцефалический барьер.
Клинический принцип. При назначении препарата учитывают, насколько безопасным он будет для данного пациента, что зависит от индивидуальных особенностей состояния больного (тяжесть инфекции, иммунный статус, пол, наличие беременности, возраст, состояние функции печени и почек, сопутствующие заболевания и т.п.) При тяжелых, угрожающих жизни инфек-циях особое значение имеет своевременная ан-тибиотикотерапия. Таким пациентам назначают комбинации из двух-трех препаратов, чтобы обес- печить максимально широкий спектр действия. При назначении комбинации из нескольких препаратов следует знать, насколько эффективным против возбудителя и
безопасным для пациента будет сочетание данных препаратов, т. е. чтобы не было антагонизма лекарственных средств в отношении антибактериальной активности и не было суммирования их токсических эффектов.
Эпидемиологический принцип.Выбор препарата, особенно для стационарного больного, должен учитывать состояние резистентности микробных штаммов, циркулирующих в данном отделении, стационаре и даже ре- гионе. Следует помнить, что антибиотикоре-зистентность может не только приобретаться, но и теряться, при этом восстанавливается природная чувствительность микроорганизма к препарату. Не изменяется только природная устойчивость.
Фармацевтический принцип.Необходимо учитывать срок годности и соблюдать правила хранения препарата, так как при нарушении этих правил антибиотик может не только по- терять свою активность, но и стать токсичным за счет деградации. Немаловажна также и стоимость препарата.
Осложнения антибиотикотерапии, их предупреждение.
Как и всякие лекарственные средства, практически каждая группа антимикробных химиопрепаратов может оказывать побочное действие, причем и на макроорганизм, и на микробы, и на другие лекарственные средства.
Осложнения со стороны макроорганизма
Наиболее частыми осложнениями анти­микробной химиотерапии являются:
Токсическое действие препаратов.Как правило, развитие этого осложнения зависит от свойств самого препарата, его до­зы, способа введения, состояния больного и проявляется только при длительном и систе­матическом применении антимикробных химиотерапевтических препаратов, когда созда­ются условия для их накопления в организме.
Особенно часто такие осложнения бывают, когда мишенью
действия препарата являются процессы или структуры, близкие по составу или строению к аналогичным структурам кле­ток макроорганизма. Токсическому действию антимикробных препаратов особенно подвер­жены дети, беременные, а также пациенты с нарушением функций печени, почек.
Побочное токсическое влияние может прояв­ляться как нейротоксическое (например, гликопептиды и аминогликозиды оказывают ототоксическое действие, вплоть до полной потери слуха за счет воздействия на слуховой нерв); нефротоксическое (полиены, полипептиды, аминогликозиды, макролиды, гликопептиды, сульфаниламиды); общетоксическое (противо­грибковые препараты — полиены, имидазолы); угнетение кроветворения (тетрациклины, суль­фаниламиды, левомицетин/хлорамфеникол, который содержит нитробензен — супрессор функции костного мозга); тератогенное [ами­ногликозиды, тетрациклины нарушают развитие костей, хрящей у плода и детей, формирование зубной эмали (коричневая окраска зубов), левомицетин/хлорамфеникол токсичен для но­ворожденных, у которых ферменты печени не полностью сформированы
(«синдром серого ребенка»), хинолоны — действуют на развива­ющуюся хрящевую и соединительную ткани].
1   ...   4   5   6   7   8   9   10   11   ...   20


написать администратору сайта