геодезия. 1. Геодезии и её связь с другими науками
Скачать 337.71 Kb.
|
5. Плоские прямоугольные геодезические координаты (зональные)При решении инженерно-геодезических задач в основном применяют плоскую прямоугольную геодезическую и полярную системы координат [ГОСТ 22268-76]. Д ля определения положения точек в плоской прямоугольной геодезической системе координат используют горизонтальную координатную плоскость ХОУ (рис. 6), образованную двумя взаимно перпендикулярными прямыми. Одну из них принимают за ось абсцисс X, другую – за ось ординат Y, точку пересечения осей О – за начало координат. Рис. 6. Плоская прямоугольная система координат Изучаемые точки проектируют с математической поверхности Земли на координатную плоскость ХОУ. Так как сферическая поверхность не может быть спроектирована на плоскость без искажений (без разрывов и складок), то при построении плоской проекции математической поверхности Земли принимается неизбежность данных искажений, но при этом их величины должным образом ограничивают. Для этого применяется равноугольная картографическая проекция Гаусса – Крюгера (проекция названа по имени немецких ученых, предложивших данную проекцию и разработавших формулы для её применения в геодезии), в которой математическая поверхность Земли проектируется на плоскость по участкам – зонам, на которые вся земная поверхность делится меридианами через 6° или 3°, начиная с начального меридиана (рис. 7). Рис. 7. Деление математической поверхности Земли на шестиградусные зоны В пределах каждой зоны строится своя прямоугольная система координат. С этой целью все точки данной зоны проецируются на поверхность цилиндра (рис. 8, а), ось которого находится в плоскости экватора Земли, а его поверхность касается поверхности Земли вдоль среднего меридиана зоны, называемого осевым. При этом соблюдается условие сохранения подобия фигур на земле и в проекции при малых размерах этих фигур. Рис. 8. Равноугольная картографическая проекция Гаусса – Крюгера (а) и зональная система координат (б): 1 – зона, 2 – координатная сетка, 3 – осевой меридиан, 4 – проекция экватора на поверхность цилиндра, 5 – экватор, 6 – ось абсцисс – проекция осевого меридиана, 7 – ось ординат – проекция экватора После проектирования точек зоны на цилиндр, он развертывается на плоскость, на которой изображение проекции осевого меридиана и соответствующего участка экватора будет представлена в виде двух взаимно перпендикулярных прямых (рис. 8, б). Точка пересечения их принимается за начало зональной плоской прямоугольной системы координат, изображение северного направления осевого меридиана – за положительную ось абсцисс, а изображение восточного направления экватора – за положительное направление оси ординат. Для всех точек на территории нашей страны абсциссы имеют положительное значение. Чтобы ординаты точек также были только положительными, в каждой зоне ординату начала координат принимают равной 500 км (рис. 8, б). Таким образом, точки, расположенные к западу от осевого меридиана, имеют ординаты меньше 500 км, а к востоку – больше 500 км. Эти ординаты называют преобразованными. На границах зон в пределах широт от 30° до 70° относительные ошибки, происходящие от искажения длин линий в этой проекции, колеблются от 1:1000 до 1:6000. Когда такие ошибки недопустимы, прибегают к трехградусным зонам. На картах, составленных в равноугольной картографической проекции Гаусса – Крюгера, искажения длин в различных точках проекции различны, но по разным направлениям, выходящим из одной и той же точки, эти искажения будут одинаковы. Круг весьма малого радиуса, взятый на уровенной поверхности, изобразится в этой проекции тоже кругом. Поэтому говорят, что рассматриваемая проекция конформна, т. е. сохраняет подобие фигур на сфере и в проекции при весьма малых размерах этих фигур. Таким образом, изображения контуров земной поверхности в этой проекции весьма близки к тем, которые получаются. Четверти прямоугольной системы координат нумеруются. Их счет идет по ходу стрелки от положительного направления оси абсцисс (рис. 9). Рис. 9. Четверти прямоугольной системы координат Если за начало плоской прямоугольной системы координат принять произвольную точку, то она будет называться относительной или условной. 6. Полярные координатыПри выполнении съемочных и разбивочных геодезических работ часто применяют полярную систему координат (рис. 10). Она состоит из полюса О и полярной оси ОР, в качестве которых принимается прямая с известным началом и направлением. Рис. 10. Полярная система координат Для определения положения точек в данной системе используют линейно-угловые координаты: полярный угол β, отсчитываемый по часовой стрелке от полярной оси ОР до направления на горизонтальную проекцию точки А', и полярное расстояние r от полюса системы О до проекции А' [ГОСТ 22268-76]. 窗体顶端 7. Системы высотВысота точки является третьей координатой, определяющей её положение в пространстве. В геодезии для определения отметок точек применяются следующие системы высот (рис. 11): ортометрическая (абсолютная); геодезическая; нормальная (обобщенная); относительная (условная). Рис. 11. Системы высот в геодезии Ортометрическая (абсолютная) высота Hо – расстояние, отсчитываемое по направлению отвесной линии от поверхности геоида до данной точки [ГОСТ 22268-76]. Геодезическая высота Hг – расстояние, отсчитываемое по направлению нормали от поверхности референц-эллипсоида до данной точки [ГОСТ 22268-76]. В нашей стране все высоты реперов государственной нивелирной сети определены в нормальной системе высот. Это связано с тем, что положение геоида под материками определить сложно. Поэтому с конца 40-х годов в СССР было принято решение не применять ортометрическую систему высот. В нормальной системе высот отметка точки Hн отсчитывается по направлению отвесной линии от поверхности квазигеоида, близкой к поверхности геоида [ГОСТ 22268-76]. Квазигеоид («якобы геоид») – фигура, предложенная в 1950-х г.г. советским учёным М.С. Молоденским в качестве строгого решения задачи определения фигуры Земли. Квазигеоид определяется по измеренным значениям потенциалов силы тяжести согласно положениям теории М.С. Молоденского. В России абсолютные высоты точек определяются в Балтийской системе высот (БСВ) относительно нуля Кронштадтского футштока – горизонтальной черты на медной пластине, прикрепленной к устою моста через обводной канал в г. Кронштадте. Относительная высота Hу – измеряется от любой другой поверхности, а не от основной уровенной поверхности. Местная система высот – Тихоокеанская, её уровенная поверхность ниже нуля Кронштадтского футштока на 1873 мм. 窗体顶端 窗体底端 窗体底端 |