Главная страница
Навигация по странице:

  • 35. Гормоны поджелудочной железы: инсулин, глюкагон.

  • 99. Коллагеновые белки зуба и кости.

  • 121. Глюкоза крови и мочи.

  • 93. Синтез РНК в тканях, его биологическая роль. Типы РНК-полимераз.

  • 113. Белки крови

  • 114. Нормальное содержание остаточного азота и мочевины.

  • Остаточный азот крови.

  • 118. Гемоглобин в крови.

  • бх экзамен. 1. Химический состав и природа белков


    Скачать 0.94 Mb.
    Название1. Химический состав и природа белков
    Анкорбх экзамен
    Дата09.07.2022
    Размер0.94 Mb.
    Формат файлаdoc
    Имя файлаBKh_EKZAMEN.doc
    ТипДокументы
    #627675
    страница18 из 18
    1   ...   10   11   12   13   14   15   16   17   18

    50. Окислительное фосфорилирование

    На уровне субстрата могут служить два примера

    (СХЕМА)При окислительном декарбоксилирование -кетоглутората на первом этапе энергия накапливается в виде восстановленного НАД, во вторых энергия накапливается макроэргической связи продукта окисления сукцинил-коэнзима А, на следующем этапе в ходе второй реакции энергия макроэргической связи сукцинил-коэнзима А трансформируется в энергию макроэргической пирофосфатной связи ГТФ.

    Второй пример. (СХЕМА) На второй схеме представлена часть процесса окислительного расщепления глюкозы. Трифосфороглицериновый алидегид подвергается окислению с образованием 1,3 дифосфоглютората причем энергия окисления накапливается в виде восстановленного НАД и энергии макроэргической связи окисленного субстрата реакции с остатком фосфорной кислоты другими словами энергия накапливается в макроэргической связи продукта реакции 1,3 дифосфоглютората, на втором этапе энергия макроэргической связи 1,3 дифосфоглютората трансформируется в энергию макроэргической пирофосфатной связи АТФ. Сравнивания две схемы процесса мы обнаруживаем в них много общего, а именно: энергия окисления в первом и втором случае первоначально накапливается в макроэргической связи окисленного субстрата с дополнительной группировкой коэнзима А в первом случае и остатком фосфорной кислоты во втором, а затем накопленная энергия используется для образования пирофосфатной макроэргической связи ГТФ или АТФ. Таким образом механизм субстратного окислительного фосфорилирования достаточно хорошо изучен.

    35. Гормоны поджелудочной железы: инсулин, глюкагон.

    Инсулин относится к гормонам белковой природы. Он синтезируется b-клетками поджелудочной железы. Инсулин является одним из важнейших анаболических гормонов. Связывание инсулина с клетками-мишенями приводит к процессам, которые увеличивают скорость синтеза белка, а также накопление в клетках гликогена и липидов, являющихся резервом пластического и энергетического материала. Инсулин, возможно за счет своего анаболического эффекта, стимулирует рост и размножение клеток. Молекула инсулина состоит из двух полипептидных цепей - А-цепи и В-цепи. В состав А-цепи входит 21 аминокислотный остаток, в состав В-цепи - 30. Эти цепи связаны между собой двумя дисульфидными мостиками: один между А7 и В7 ( номера аминокислот,

    считая с N-концов полипептидных цепей ), второй между А20 и В19. Третий дисульфидный мостик находится в цепи А, связывая А6 и А11. Главным физиологическим стимулом выделения инсулина из b-клеток в кровь является повышение содержания глюкозы в крови. Влияние инсулина на обмен углеводов можно охарактеризовать

    следующими эффектами:

    1.Инсулин увеличивает проницаемость клеточных мембран для глюкозы в так называемых инсулин-зависимых тканях.

    2.Инсулин активирует окислительный распад глюкозы в клетках.

    3.Инсулин ингибирует распад гликогена и активирует его син тез в гепатоцитах.

    4.Инсулин стимулирует превращение глюкозы в резервные триглицериды.

    5.Инсулин ингибирует глюконеогенез, снижая активность некоторых ферментов глюконеогенеза.

    Влияние инсулина на обмен липидов складывается из ингибирования липолиза в липоцитах за счет дефосфорилирования триацилглицероллипазы и стимуляции липогенеза.

    Инсулин оказывает анаболическое действие на обмен белков: он стимулирует поступление аминокислот в клетки, стимулирует транскрипцию многих генов и стимулирует, соответственно, синтез многих белков, как внутриклеточных, так и внеклеточных.

    ГЛЮКАГОН

    Глюкагон представляет собой гормон полипептидной природы, выделяемый a-клетками поджелудочной железы. Основной функцией этого гормона является поддержание энергетического гомеостаза организма за счет мобилизации эндогенных энергетических рессурсов, этим объясняется его суммарный катаболический эффект.

    В состав полипептидной цепи глюкагона входит 29 аминокислотных остатков, его молекулярная масса 4200, в его составе от сутствует цистеин. Глюкагон был синтезирован химическим путем, чем была окончательно подтверждена его химическая структура.

    Основным местом синтеза глюкагона являются a-клетки поджелудочной железы, однако довольно большие количества этого гормона образуются и в других органах желудочно-кишечного тракта. Синтезируется глюкагон на рибосомах a-клеток в виде более длин ного предшественника с молекулярной массой около 9000. В ходе процессинга происходит существенное укорочение полипептидной цепи,после чего глюкагон секретируется в кровь. В крови он находится в свободной форме, его концентрация в сыворотке крови составляет 20-100 нг/л. Период его полужизни равняется примерно 5 минутам. Основная часть глюкагона инактивируется в печени путем гидролитического отщепления 2 аминокислотных остатков с N-конца молекулы. Секреция глюкагона a-клетками поджелудочной железы тормозится высоким уровнем глюкозы в крови, а также соматостатином, выделяемым D-клетками поджелудочной железы. Возможно, что секреция глюкагона ингибируется также инсулином или ИФР-1. Стимулируется секреция понижением концентрации глюкозы в крови, однако механизм этого эффекта неясен. Кроме того, секрецию глюкагона стимулируют соматотропный гормон гипофиза, аргинин и Са2+.

    Механизм действия глюкагона достаточно хорошо изучен. Ре цепторы для гормона локализованы в наружной клеточной мембране. Образование гормонрецепторных комплексов сопровождается активацией аденилатциклазы и увеличением в клетках концентрации цАМФ, сопровождающимся активацией протеинкиназы и фосфорилированием

    белков с изменением функциональной активности последних. Под действием глюкагона в гепатоцитах ускоряется мобилизация гликогена с выходом глюкозы в кровь. Этот эффект гормона обусловлен активацией гликогенфосфорилазы и ингибированием гликогенсинтетазы в результате их фосфорилирования. Следует заметить, что глюкагон, в отличие от адреналина, не оказывает влияния на скорость гликогенолиза в мышцах.

    Глюкагон стимулирует липолиз в липоцитах, увеличивая тем самым поступление в кровь глицерола и высших жирных кислот. В печени гормон тормозит синтез жирных кислот и холестерола из ацетил-КоА, а накапливающийся ацетил-КоА используется для синтезаацетоновых тел. Таким образом, глюкагон стимулирует кетогенез.


    99. Коллагеновые белки зуба и кости.

    Коллаген в эмали обнаружен в виде следов.

    Сравнительно недавно в структуре эмали доказано наличие гликопротеидов, также небольшое кол-во Са-связывающего белка (гаммакарбоксиглутаматный белок), этот белок с достаточно высокой емкостью и склонностью к агрегации до тетрамеров в нейтральной среде. Содержание белка в эмали сост. 1,3%.

    Из белков дентина основным является коллаген, который содержит типичный для коллагена кости (коллаген 1-го типа) аминокислотный состав.

    Коллаген дентина связан с кислыми протеогликанами содержащими хондроитинсульфаты, они в свою очередь содержат Са. Обнаружены здесь так же различные гликопротеиды: сиалогликопротеид, группа белков - анилины, фосфопротеины. Углеводный компонент органического матрикса дентина представлен в основном гликогеном. Одновременно здесь есть гетероолигосахариды гликопротеидов, хондроитинсульфаты, а так же галактоза и глюкоза, связанные с коллагеном.

    Органический матрикс цемента сходен с матриксом трубчатой кости. Преобладающим здесь являются коллагеновые белки первого типа. В то же время есть минорные коллагены. Матрикс цемента содержит и неколлагеновые белки: протеогликаны, глико- и фосфопротеиды, Са-связывающий белок.

    Основными белками внеклеточного матрикса пульпы являются коллагеновые белки, формирующиеся в коллагеновые волокна. Эластические волокна в пульпе не найдены. Пульпа корневых каналов отличается от коронковой пульпы большим содержанием пучков коллагеновых волокон.

    Периодонт- это соединительнотканная связка, удерживающая корень зуба в зубной альвеоле. Основными компонентами межклеточного вещества здесь явл. коллагеновые волокна. Они натянуты между цементом корня зуба и костными стенками зубной альвеолы. Среди пучков коллагеновых волокон периодонта обнаружены необычные волокна по химическому составу занимающие промежуточное положение между коллагеновыми и эластическими - окситалановые. Между пучками коллагеновых волокон встречаются эластические волокна обычно вблизи сосудов и нервов.

    121. Глюкоза крови и мочи.

    Глюкоза - 3,3-5,5 мМ/л.

    Изменения в крови и появление в моче.

    Повышениепоказателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.

    Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда),.

    В моче глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качественными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостероиды.

    В почках глюкагон увеличивает клубочковую фильтрацию, по-видимому, этим объясняется наблюдаемое после введения глюкагона повышение экскреции ионов натрия, хлора, калия , фосфора и мочевой 44444кислоты.

    93. Синтез РНК в тканях, его биологическая роль. Типы РНК-полимераз.

    Транскрипция РНК.

    Синтез РНК представляет собой первый этап реализации генетической информации в ходе которого эта информация переписывается на молекулу РНК и только в этом виде становиться доступной для ее использования в клетке.

    В результате транскрипции образуется

    во-первых матричная РНК

    во-вторых структурная РНК (рРНК, тРНК, мяРНК)

    Основная масса РНК синтезируется в клетке в интерфазе. Причем скорость синтеза отдельных молекул РНК в клетке примерно в 20 раз превышает скорость синтеза ДНК в S фазе клеточного синтеза. Синтез РНК носит достаточно избирательный характер.

    В большинстве клеток функциональные последовательности различных классов РНК копируются в целом примерно с 1% последовательностей ДНК.

    В клетках разных типов транскрибируются 2 класса генов.

    Один класс генов известны под называнием - гены домашнего хозяйства транскрибируются практически во всех клетках. Продукты этих генов отвечают за процессы жизнеобеспечения клеток. Например обеспечивают синтез ферментов гликолиза, цикла Кребса.

    Второй класс генов транскрибируются только в клетках той или иной ткани, а

    ; продукты отвечают за синтез белков обеспечивающих выполнение той или иной ткани

    своих специализированных функций. Примером могут служит гены транскрибируемы в

    гепатоцитах и обеспечивающие синтез белков участвующие в процессах свертывания крови.

    В клетке имеется 3 ДНК полимеразы.

    1. ос-ДНК-полимераза принимает непосредственно участие в репликации хромосомной ДНК.

    2. р-ДНК-полимераза участвует в процессах репорации .поврежденной хромосомной ДНК.

    3. у-ДНК-полимераза обеспечивает репликацию митохондриальной ДНК.

    У а-ПНК-полимеразы выделяют 3 наиболее важных функции

    1. Способна ббирать на основе указания матрицы из окружающей среды комплементарные дезоксинуклеозидтрифосфаты.

    2. Катализирует образование фосфодиэфирной связи между 3' концом синтезируемой дочерней цепи ДНК и фосфатной группировкой очередного дезоксирибонулеотида.

    3. Фермент способен контролировать правильность сборки дочерней молекулы ДНК.

    Для работы а-ДНК-полимеразы необходимы 3 условия.

    1. ДНК-полимераза способна присоединять новые нуклеогшдные остатки к уже имеющемуся фрагменту дочерней цепи ДНК. Она не можрт синтез дочерней цепи и нуля.

    2. Фермент может работать только на одноцепочечной матрице

    3. Фермент способен синтезировать дочернюю цепь ДНК только в направлении 5'-3' причем работая при этом на антипараллельной матричной цепи.

    Реплицируемая молекула ДНК не удовлетворяет ни одному из и этих требований, поскольку она представляет собой двойную плотно закрученную структуру и: антипараллельных цепей без каких-либо разрывов в районе которых мог бы присоединиться и начать свою работу данный фермент. Все эти сложности разрешаются в ходе работы репликазного комплекса.

    Этот комплекс формируется с помощью инициаторных белков в зоне сайта инициации репликации.

    В состав этого комплекса входят ферменты и неферментные белки формирующие одноцепочные матрицы на которых может работать ДНК-полимераза.

    Расплетение двойной спирали ДНК осуществляется с помощью ДНК-хеликаз и топоизомераз, так же белков связывающих одноцепочечную цепь ДНК (SSB - белки)

    ДНК-хеликаза способна связываться с одной из цепи ДНК и двигаться по этой цепи расплетая по ходу своего движения двойную спираль ДНК. Этому процессу помогают ДНК-топоизомераза, раскручивающая цепи ДНК, и множество молекул дестабилизирующего белка (SSB-белки), связывающихся с обеими одиночными цепями ДНК.
    113. Белки крови

    Содержание Белок общий в плазме - 65 - 85гр/л Подразделяются на:

    • альбумины 40-50гр/л

    • глобулины 20-ЗОгр/л

    • Фибриноген 2-4гр/л

    Функция белков.

    • транспортная. Соединяясь с рядом веществ (холистерин, билирубин и др

    • поддержание рН

    • резерв аминокислот

    • защитная. Принимают активное участие в свертывании крови.

    • поддержание уровня катионов

    • поддержание осмотического давления (0,02 атм плазмы крови). Являясь коллоидами, связывают воду и задерживают ее, не позволяя выходить из кровяного русла

    Изменение белков при патологии.

    Гиперпротеинемии. Увеличенное содержание белков плазмы крови. Возникают при больших потерях воды вследствие ожогов, диарея у детей, рвота при непроходимости верхних отделов кишечника.

    Гипопротеинемия. Снижения содержания общего белка в плазме крови. Развивается за счет снижения содержания альбуминов. Причины-. Голодание, тяжелое поражение печени, нефрозы, увеличение проницаемости стенок капилляров.

    Диспротеинемии. Нарушение % соотношения отдельных фракций. Часто оно характерно для тех или иных заболеваний.

    Причины появления в моче.

    Белок. В нормальной, моче имеется незначительное количество белка/ которое не обнаруживается качественными пробами, поэтому считается, что белка в моче нет.При ряде заболеваний в моче появляется белок — протеинурия.1. Внепочечные протеинурии наблюдаются при циститах, пиелитах, простатитах, уретритах и т. д. Количество белка, как правило, не превышает 1%. 2. Почечные протеинурии при функцион, нарушениях — неорганического поражения паренхимы, повышена проницаемость почечного фильтра.

    114. Нормальное содержание остаточного азота и мочевины.

    Содержание в крови и суточное выведение В крови - 3,3 - 8,3 мМ/л Суточное выведение - 20 - 35 гр.

    количество мочевины выводимое с мочой зависитот нескольких факторов.

    • Снижение содержания мочевины наблюдается при снижении белка в пище.

    • Количество выводимой мочевины будет так же уменьшаться при патологии почек, которое сопровождается задержкой азотистых шлаков в организме.

    • Выведение мочевины может снижаться при тяжелой патологии печени как следствие нарушения синтеза мочевины.

    Повышение показателя имеет место:

    а) при почечной недостаточности — остром и хроническом нефрите, остром канальцевом некрозе б) при усилении метаболизма азота на фоне уменьшения почечного кровотока или нарушения функции почек, в) при уменьшении почечного кровотока — при шоке,недостаточности функции надпочечников и иногда при сердечной недостаточности с явлениями застоя.

    Снижение показателя имеет место при печеночной недостаточности, нефрозе, при кахексии.

    Остаточный азот крови.

    Остаточный азот - небелковый азот крови, т.е. остающийся в фильтрате после осаждения белков. В крови - 14,3-28,6 мМ/л

    Содержание небелкового азота в цельной крови и плазме почти одинаково и составляет в крови 15 — 25 ммоль/л. В состав небелкового азота крови входит главным образом азот конечных продуктов обмена простых и сложных белков ( азот моче­вины (50 % от общего количества небелкового азота), аминокислот (25 %), эрготио-неина (8%)', мочевой кислоты (4%), креатина (5%), креатинина (2,5%), аммиака и индикана (0,5 %)

    Небелковый азот крови называют также остаточным азотом, т. е. остающимся в фильтрате после осаждения белков. У здорового человека колебания в содержа­нии небелкового, или остаточного, азота крови незначительны и в основном зави­сят от количества поступающих с пищей белков. При ряде патологических состояний уровень небелкового азота в крови повышается. Это состояние носит название азотемии. Азотемия в зависимости от причин, вызывающих ее, подразделяется на ретенционную и продукционную.

    При почечной ретенционной азотемии концентрация остаточного азота в крови увеличивается вследствие ослабления очистительной (экскреторной) функции почек. Резкое повышение содержания остаточного азота при ретенционной почечной азо­темии происходит в основном за счет мочевины. В этих случаях на долю азота мочевины приходится 90 % небелкового азота крови вместо 50 % в норме. Вне-почечная ретенционная азотемия может возникнуть в результате тяжелой недоста­точности кровообращения, снижения артериального давления и уменьшения почеч­ного кровотока. Нередко внепочечная ретенционная азотемия является результатом наличия препятствия оттоку мочи после ее образования в почке.

    Продукционная азотемия наблюдается при избыточном поступлении азотсодержащих продуктов в кровь, как следствие усиленного распада тканевых белков при обширных воспалениях, ранениях, ожогах, кахексии и др.
    118. Гемоглобин в крови.

    Содержание в крови: Мужчины 135-180гр/л Женщины 120-160гр/л

    Биологическая роль Гемоглобин это идеальный дыхательный белок, который обеспечивает

    1. транспорт кислорода к тканям,

    2. транспорт углекислого газа и

    3. гемоглобиновый буфер (основная буферная емкость).

    Гипоксия(кислородное голодание) — состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического-окисления.

    1. Гипоксия вследствие понижения Р02, во вдыхаемом воздухе (экзогенная гипоксия).

    2. Гипоксия при патологических процессах, нарушающих снабжение тканей кис­лородом при нормальном содержании его в окружающей среде. Сюда относятся следующие типы: а) дыхательный (легочный); б) сердечно-сосудистый (циркулятор-ный); в) кровяной (гемический); г) тканевый (гистотоксический): д) смешанный.

    Гемоглобинурииобусловлены внутрисосудистым гемолизом эритроцитов.

    Первичные — это холодовая, маршевая пароксизмальная.

    Вторичные — это переливание несовместимой крови, отравление сульфаниламидами, анилиновыми красками, грибами и т. д.

    Гемоглобинурия - обнаружение в моче крови в виде растворенного кровяного пигмента

    Гематурия - обнаружение в моче крови в форме красных кровяных клеток.

    Почечная гематурия - основной симптом почечного нефрита

    Внепочечная гематурия - при воспалительных процессах или травмах мочевых путей.

    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта