Главная страница
Навигация по странице:

  • 1. Классификация центральных поверхностей.

  • 2. Классификация нецентральных поверхностей.

  • Эллипсоид.2. Гиперболоиды.  1°. Однополостный гиперболоид. 2°. Двуполостный гиперболоид.3. Параболоиды.

  • 2. Классификация нецентральных поверхностей второго по­рядка. Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I

  • 1 )

  • 1 . Эллипсоид.

  • 2. Гиперболоиды.  1°

  • 3. Параболоиды.  1°.

  • 4. Конус и цилиндры второго порядка.  1°.

  • Поверхность второго порядка. 1. Инварианты уравнения поверхности второго порядка


    Скачать 1.24 Mb.
    Название1. Инварианты уравнения поверхности второго порядка
    АнкорПоверхность второго порядка
    Дата06.01.2023
    Размер1.24 Mb.
    Формат файлаdoc
    Имя файлаreferat.doc
    ТипДокументы
    #874172

    CREATED by KID

    Содержание.



    • Понятие поверхности второго порядка.

      1. Инварианты уравнения поверхности второго порядка.



    • Классификация поверхностей второго порядка.

      1. Классификация центральных поверхностей.

     1°. Эллипсоид.

     2°. Однополостный гиперболоид.

     3°. Двуполостный гиперболоид.
     4°. Конус второго порядка.

    2. Классификация нецентральных поверхностей.

     1°. Эллиптический цилиндр, гиперболический цилиндр, эллиптический параболоид, гиперболиче­ский параболоид.

     2°. Параболический цилиндр
    • Исследование формы поверхностей второго порядка по их каноническим уравнениям.


    1. Эллипсоид.
      2. Гиперболоиды.


     1°. Однополостный гиперболоид.

     2°. Двуполостный гиперболоид.

    3. Параболоиды.

     1°. Эллиптический параболоид.
     2°. Гиперболический пара­болоид.

    4. Конус и цилиндры второго порядка.

     1°. Конус второго порядка.
     2°. Эллиптический цилиндр.
     3°. Гиперболический цилиндр.
     4°. Параболический цилиндр.
    Список использованной литературы.
    1. «Аналитическая геометрия» В.А. Ильин, Э.Г. Позняк


    § 1. Понятие поверхности второго порядка.



    Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

    a11х2 + а22у2 + a33z2+ 2a12xy + 2a23уz + 2a13xz +14x +24у+2а34z44 =0 (1)

    в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13 отличен от нуля.

    Уравнение (1) мы будем называть общим уравнением по­верхности второго порядка.

    Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной де­картовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравне­ние (1) и уравнение, полученное после преобразования коор­динат, алгебраически эквивалентны.
    1
    . Инварианты уравнения поверхности второго порядка.

    Справедливо следующее утверждение.
    являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы ко­ординат.

    Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

    § 2. Классификация поверхностей второго порядка


    1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стан­дартное упрощение уравнения этой поверхности. В резуль­тате указанных операций уравнение поверхности примет вид

    a11х2 + а22у2 + a33z2 + а44 = 0 (2)

    Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 а22 a33 , то коэффициенты a1122 , a33 удовлетворяют условию :



    Возможны следующие случаи :
    1°. Коэффициенты a1122 , a33 одного знака, а коэффициента44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

    Если коэффициенты a1122 , a33 , а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют коорди­наты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

    Если знак коэффициентов a1122 , a33 противоположен знаку коэффициента а44 , то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

    Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа



    положительны. Обозначим эти числа соответственно а2, b2, с2. После не­сложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:


    Уравнение (3) называется каноническим уравнением эллип­соида.

    Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

    2°. Из четырех коэффициентов a1122 , a33 , а44 два одного зна­ка, а два других—противоположного. В этом случае поверх­ность S называется однополостным гиперболоидом.

    Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0, а22 > 0, a33 < 0, а44 < 0. Тогда числа



    положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:



    Уравнение (4) называется каноническим уравнением однопо­лостного гиперболоида.

    Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу и Oz называются его глав­ными осями.

    . Знак одного из первых трех коэффициентов a1122 , a33 , а44противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

    Запишем уравнение двуполостного гиперболоида в канониче­ской форме. Пусть, ради определенности, a11 < 0, а22 < 0, a33 > 0, а44 < 0. Тогда :



    Обозначим эти числа соответственно через a2, b2, с2. Поcли несложных преобразова­ний уравнение (2) двуполостного гиперболоида можно запи­сать в следующей форме:


    Уравнение (5) называется каноническим уравнением двупо­лостного гиперболоида.

    Если двуполостный гиперболоид задан своим каноническим

    уравнением, то оси Ох, Оу и Оz называются его главными осями.

    . Коэффициент а44 равен нулю. В этом случае поверхность S называетсяконусом второго порядка.

    Если коэффициенты a11 , а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 = 0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 , а22 , a33 имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

    Обычно уравнение вещественного конуса второго порядка за­писывают в канонической форме. Пусть, ради определенности,

    a11 > o, а22 > 0, a33 < 0. Обозначим



    соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде


    Уравнение (6) называется каноническим уравнением веще­ственного конуса второго порядка.



    2. Классификация нецентральных поверхностей второго по­рядка.

    Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариант I3равен нулю. Произведем стандартное упрощение урав­нения этой поверхности. В результате уравнение поверхности примет вид

    11х´2 + а´22у´2 + 33z´2 +´14+´24у´+2а´34´44 =0 (7)

    для системы координат Ox´y´z´

    Так как инвариант I3 = 0 и его значение, вы­численное для уравнения (7) , равно

    11 • а´22 33 , то один или два из коэффициентов 11 , а´22 , 33 равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.


    . Один из коэффициентов 11 , а´22 , 33 равен нулю. Ради определенности будем считать, что33 = 0 (если равен нулю ка­кой-либо другой из указанных коэффициентов, то можно перей­ти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z' к новым координатам х, у, z по формулам
    Подставляя х', у' и z', найденные из (8), в левую часть (7) и заменяя затем

    11на a11 , а´22 на а22 , а´34 на p и а´44на q , получим следующее уравнение поверхности S в новой системе ко­ординат Oxyz :
    a11х2 + а22у2 + 2pz + q = 0 (9)

    1
    )
    Пусть р = 0, q = 0. ПоверхностьSраспадается на пару пло­скостей
    При этом, очевидно, эти плоскости будут мнимыми, если знаки a11 и а22одинаковы, и вещественными, если знаки a11 и а22различны.

    2) Пусть р = 0, q ≠ 0. Уравнение (9) принимает вид
    a11х2 + а22у2 + q = 0 (10)
    Известно, что уравнение (10) яв­ляется уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , qимеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. ци­линдр будет мнимым. Если же среди коэффициентов a11 , а22 , qимеются коэффициенты разных знаков, то цилиндр будет ве­щественным. Отметим, что в случае, когда a11 и а22имеют одинаковые знаки, a q противоположный, то величины



    положительны.


    Обозначая их соответственно через а2 и b2, мы приведем уравнение (10) к виду


    Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что урав­нение гиперболического цилиндра может быть приведено к виду


    3) Пусть р0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами




    (0, 0, ).
    При этом оставим старые обозначения координат х, у, z. Очевидно, для того чтобы получить уравнение поверх­ности S в новой системе координат, достаточно заменить в урав­нении (9)


    Получим следующее уравнение:

    a11х2 + а22у2 + 2pz = 0 (13)
    Уравнение (13) определяет так называемые параболоиды. Причем если a11 и а22 имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:



    Уравнение (14) легко получается из (13). Если a11 и а22 имеют разные знаки, то параболоид называется гиперболиче­ским. Каноническое уравнение гиперболического параболоида имеет вид



    Это уравнение также легко может быть получено из (13).

    2°. Два из коэффициентов11 , а´22 , 33 равны нулю. Ради определенности будем считать, что 11= 0 и а´22= 0 Перейдем от х,', у', z'к. новым координатам х, у, z по формулам :


    Подставляя х', у' и z', найденные из (16) в левую часть (7) и заменяя затем 33 на a33 , 14 на р,24 на q и 44 на r , по­лучим следующее уравнение поверхности S в новой системе ко­ординат Охуz:

    a33 z2 + 2px + 2qy + r = 0 (17)
    1
    )
    Пусть р=0, q=0. Поверхность S распадается на пару па­раллельных плоскостей

    При этом, очевидно, эти плоскости будут мнимыми, если знаки a33 иr одинаковы, и вещественными, если знаки a33 и r различ­ны, причем при r = 0 эти плоскости сливаются в одну.

    2) Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг оси Oz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, у и z для новых координат точек, уравнение (17) примет вид
    a33 z2 + 2q´y = 0 (19)
    которое является уравнением параболического цилиндра с обра­зующими, параллельными новой оси Ох.

    § 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям


    1 . Эллипсоид.


    Из уравнения (3) вытекает, что координатные плоскости яв­ляются плоскостями симметрии эллипсоида, а начало коорди­нат—центром симметрии. Числа а, b, с называются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе форму эллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

    Ради определенности рассмотрим линии Lh пересечения эл­липсоида с плоскостями

    z = h (20)

    параллельными плоскости Оху. Уравнение проекции L*h ли­нии Lh на плоскость Оху получается из уравнения (3), если положить в нем z = h. Таким образом, уравнение этой проекции имеет вид



    Е
    сли положить

    то уравнение (21) можно записать в виде


    т
    . е. L*h представляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lh получается «подъемом» L*h на высоту h по оси Оz (см. (20)), то и Lh представляет собой эллипс.

    Представление об эллипсоиде можно получить следующим об­разом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят от h (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на ка­кую высоту по оси Оz должен быть «поднят» этот эллипс. Мы получим своего рода «карту» эллипсоида. Используя эту «кар­ту», легко представить себе пространственный вид эллипсоида.

    (Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)
    Наглядное изображение эллипсоида находится на следующей странице.


    Эллипсоид .


    2. Гиперболоиды.

    . Однополостный гиперболоид. Обратимся к каноническому

    у равнению (4) однополостного гиперболоида


    Из уравнения (4) вытекает, что координатные плоскости яв­ляются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.




    . Двуполостный гиперболоид.

    Из канонического уравнения (5) двуполостного гиперболоида вытекает, что координатные пло­скости являются его плоскостями симметрии, а начало коорди­нат — его центром симметрии.




    3. Параболоиды.

    1°. Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида


    мы видим, что для него Oxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.




    2°. Гиперболический пара­болоид. Из канонического уравнения (15)
    гиперболического параболои­да вытекает, что плоскости Oxz и Оуz являются плоско­стями симметрии. Ось Oz называется осью гиперболического пaраболоида.
    Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.
    Линии z=h пересечения гиперболического параболоида плоскостями z=h представляют собой при h>0 гиперболы



    с полуосями





    а при h < 0 —сопряженные гиперболы для гипербол (24)



    с полуосями
    И
    спользуя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :
    Из формул (25) и (27) вытекает, что прямые (28) являются асимптотами гипербол (24) и (26).
    Карта гиперболического параболоида дает представление о его пространственной форме. Как и в случае эллип­тического параболоида, можно убедиться в том, что гиперболи­ческий параболоид может быть получен путем параллельного перемещения параболы, предста­вляющей собой сечение плоско­стью Oxz (Оуz), когда ее вер­шина движется вдоль параболы, являющейся сечением параболо­ида плоскостью Oyz (Oxz).

    Прим.:Изображение гиперболического пaраболоида дано на следующей странице.

    Г
    иперболический пара­болоид.




    4. Конус и цилиндры второго порядка.

    1°. Конус второго порядка

    Убедимся, что вещественный конус S образован прямыми ли­ниями, проходящими через начало О координат. Естественно на­зывать точку О вершиной конуса.

    Для доказательства сформулированного утверждения, очевид­но, достаточно установить, что прямая L, соединяющая произвольную, отличную от начала координат точку
    М00, у0, z0) ко­нуса (6) и начало координат О , целиком распола­гается на конусе, т. е. координаты (х, у, z) любой точки М прямой L удовлетворяют уравнению (6).

    Т ак как точка М00, у0, z0) лежит на конусе (6), то :

    К
    оординаты (х, у, z) любой точки М прямой L равны соответ­ственно tx0 , ty0 , tz0 , где tнекоторое число. Подставляя эти значения для х, у и z в левую часть (6), вынося затем t2 за скоб­ку и учитывая (29), мы убедимся в том, что М лежит на ко­нусе. Таким образом, утверждение доказано. Представление о форме конуса может быть получено методом сечений. Легко убедиться, что сечения конуса плоскостями z = h представляют собой эллипсы с полуосями :
    . Эллиптический цилиндр.





    Состоит из прямых линий, параллельных оси Oz .

    . Гиперболический цилиндр.





    Состоит из прямых линий, параллельных оси Oz .

    . Параболический цилиндр.

    a33 z2 + 2q´y = 0 (19)
    Путем переименования осей координат и простых арифметических операций из уравнения, (19) мы получим новое, компактное уравнение параболического цилиндра.












    написать администратору сайта