Главная страница
Навигация по странице:

  • 1. Классификация методов искусственного воздействия на призабойную зону пласта. Назначение методов и их общая характеристика.

  • 2. Коэффициент продуктивности и факторы, его определяющие. Условия притока жидкости к скважинам. Виды гидродинамического несовершенства скважин.

  • 3. Основные причины снижения проницаемости в процессе эксплуатации скважин. Выбор скважин для обработки призабойной зоны пласта.

  • 4. Понятие о призабойной зоне пласта. Параметры, характеризующие состояние ПЗП.

  • 5. Обработка скважин соляной кислотой (СКО). Кислотные ванны. Область применения, механизм воздействия.

  • 6. Кислотная обработка под давлением. Поинтервальная или ступенчатая солянокислотная обработка призабойной зоны пласта. Область применения, механизм воздействия.

  • 7. Термокислотные обработки призабойной зоны пласта. Область применения, механизм воздействия.

  • 8. Кислотные обработки терригенных коллекторов. Область применения, механизм воздействия.

  • 9. Тепловая обработка призабойной зоны пласта (закачка нагретого жидкого теплоносителя, электротепловая обработка). Область применения, механизм воздействия.

  • 10. Сущность гидравлического разрыва пласта. Технология гидравлического разрыва пласта (ГРП). Область применения, механизм воздействия.

  • 1. Классификация методов искусственного воздействия на призабойную зону пласта. Назначение методов и их общая характеристика


    Скачать 101 Kb.
    Название1. Классификация методов искусственного воздействия на призабойную зону пласта. Назначение методов и их общая характеристика
    Дата18.11.2020
    Размер101 Kb.
    Формат файлаdocx
    Имя файла10_voprosov_gotov.docx
    ТипДокументы
    #151718

    Содержание


    1. Классификация методов искусственного воздействия на призабойную зону пласта. Назначение методов и их общая характеристика. 2

    2. Коэффициент продуктивности и факторы, его определяющие. Условия притока жидкости к скважинам. Виды гидродинамического несовершенства скважин. 3

    3. Основные причины снижения проницаемости в процессе эксплуатации скважин. Выбор скважин для обработки призабойной зоны пласта. 5

    4. Понятие о призабойной зоне пласта. Параметры, характеризующие состояние ПЗП. 7

    5. Обработка скважин соляной кислотой (СКО). Кислотные ванны. Область применения, механизм воздействия. 8

    6. Кислотная обработка под давлением. Поинтервальная или ступенчатая солянокислотная обработка призабойной зоны пласта. Область применения, механизм воздействия. 10

    7. Термокислотные обработки призабойной зоны пласта. Область применения, механизм воздействия. 12

    8. Кислотные обработки терригенных коллекторов. Область применения, механизм воздействия. 13

    9. Тепловая обработка призабойной зоны пласта (закачка нагретого жидкого теплоносителя, электротепловая обработка). Область применения, механизм воздействия. 15

    10. Сущность гидравлического разрыва пласта. Технология гидравлического разрыва пласта (ГРП). Область применения, механизм воздействия. 18


    1. Классификация методов искусственного воздействия на призабойную зону пласта. Назначение методов и их общая характеристика.


    Все методы воздействия на призабойную зону скважины можно разделить на три основные группы:

    а) химические;

    б) механические;

    в) тепловые.

    Химические методы воздействия целесообразно применять только в тех случаях, когда можно растворить породу пласта или элементы, отложение которых обусловило ухудшение проницаемости ПЗС, как например, соли или железистые отложения и др. Типичным методом воздействия является простая кислотная обработка.

    Механические методы воздействия эффективны в твердых породах, когда создание дополнительных трещин в ПЗС позволяет приобщить к процессу фильтрации новые удаленные части пласта. К этому виду воздействия относится гидроразрыв пласта. Тепловые методы целесообразны только в тех случаях, когда в ПЗС произошло отложение твердых пли очень вязких углеводородов, таких как парафина, смол, асфальтенов, а также и при фильтрации вязкой нефти. К этому виду воздействия относятся прогревы ПЗС глубинным электронагревателем, паром или другими теплоносителями.

    Существуют разновидности методов воздействия на ПЗС, которые сочетают характерные особенности перечисленных трех основных. Например, термокислотная обработка скважин сочетает в себе как химическое воздействие на породу пласта, так и тепловое воздействие в результате выделения большого количества теплоты при химической реакции со специально вводимыми веществами и т. д.

    1. Обработка скважин соляной кислотой

    2. Термокислотные обработки

    3. Поинтервальная или ступенчатая СКО

    4. Кислотные обработки терригенных коллекторов

    5. Техника и технология кислотных обработок скважин

    6. Гидравлический разрыв пласта и другие


    2. Коэффициент продуктивности и факторы, его определяющие. Условия притока жидкости к скважинам. Виды гидродинамического несовершенства скважин.


    Коэффициент продуктивности добывающей скважины – отношение дебита Q к перепаду между пластовым и забойным давлением, соответствующими этому дебиту – показывает на сколько может измениться дебит скважины при изменении депрессии на пласт на единицу.

    Из формулы Дюпюи коэффициент продуктивности может быть определен как

    [1]



    Для нагнетательной скважины определяют аналогичный коэффициент –

    [2]



    коэффициент приемистости нагнетательной скважины; Qв – расход воды, закачиваемой в данную скважину.

    Коэффициент продуктивности определяется по результатам гидродинамических исследований и эксплуатации скважин.

    По наклону индикаторной линии определяют фактическую продуктивность нефтяной скважины.

    Реальные индикаторные диаграммы не всегда получаются прямолинейными (Рис 1). Искривление индикаторной диаграммы характеризует характер фильтрации жидкости в призабойной зоне пласта.



    Рис. 1 Индикаторные кривые при фильтрации по пласту однофазной жидкости:

    1- установившаяся фильтрация по линейному закону Дарси;

    2- неустановившаяся фильтрация или фильтрация с нарушением линейного закона Дарси при больших Q;

    3 - нелинейный закон фильтрации.

    Искривление индикаторной линии в сторону оси DP (рис. 1, кривая 2) означает увеличение фильтрационных сопротивлений по сравнению со случаем фильтрации по закону Дарси. Это объясняется тремя причинами:

    1) Превышение скорости фильтрации в ПЗП критических скоростей при котрых линейный закон Дарси нарушается (V>Vкр)

    2) Образованием вокруг скважины области двухфазной (нефть+газ) фильтрации при Рзаб<Рнас. Чем меньше Рзаб, тем больше радиус этой области.

    3) Изменения проницаемости и раскрытости микротрещин в породе при изменении внутрипластового давления вследствие изменения Рзаб.

    Искривление ИД в сторону оси Q (рис. 1, кривая 3) объясняется двумя причинами:

    - некачественные измерения при проведении исследований;

    - неодновременным вступлением в работу отдельных прослоев или пропластков.

    Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. Разность между пластовым и забойным давлением называется депрессией на пласт.

    [3]



    Целесообразно выделить следующие три вида гидродинамического несовершенства скважин:

    1) по степени вскрытия пласта, когда скважина вскрывает продуктивный пласт не на всю толщину;

    2) по характеру вскрытия пласта, когда связь пласта со скважиной осуществляется не через открытую боковую поверхность скважины, а только через перфорационные отверстия в обсадной колонне;

    3) по качеству вскрытия пласта, когда проницаемость пористой среды в призабойной зоне снижена по отношению к естественной проницаемости пласта.

    3. Основные причины снижения проницаемости в процессе эксплуатации скважин. Выбор скважин для обработки призабойной зоны пласта.


    К основным причинам снижения проницаемости призабойной зоны в процессе эксплуатации скважин относятся:

    для добывающих скважин

    · проникновение жидкости глушения (пресной или соленой воды) в процессе подземного ремонта или жидкости промывки,

    · проникновение пластовой воды в обводненных скважинах при их остановках,

    · набухание частиц глинистого цемента терригенных коллекторов при насыщении их пресной водой,

    · образование водонефтяной эмульсии,

    · выпадение и отложение асфальто-смоло-парафиновых составляющих нефти или солей из попутно добываемой воды при изменении термобарических условий,

    · проникновение в призабойную зону механических примесей и продуктов коррозии металлов при глушении скважин;

    для нагнетательных скважин

    · набухание глинистых пород при контакте с закачиваемой пресной водой, а также с растворами определенных химических реагентов,

    · смена при закачке минерализованной воды на пресную,

    · кольматация призабойной зоны твердой фазой промывочной жидкости при производстве в скважине ремонтных работ,

    · повышенная остаточная нефтенасыщенность в призабойных зонах скважин, которые до перевода в нагнетательные работали как добывающие.

    Объектами воздействия являются скважины, эксплуатирующие карбонатные коллектора с обводненностью от 45% до 100% и отвечающие следующим условиям:

    а) наличие запасов нефти в пласте в зоне действия добывающих скважин;

    б) пластовое давление не выше гидростатического давления;

    в) кавернозность, пористость, трещиноватость должны находиться в пределах, обеспечивающих давление нагнетания жидкости 6-12 МПа при интенсивности закачки 100-600 л/мин.

    4. Понятие о призабойной зоне пласта. Параметры, характеризующие состояние ПЗП.


    Призабойная зона скважины (ПЗС) - область, в которой все процессы протекают наиболее интенсивно. Здесь как в единый узел сходятся линии токов при извлечении жидкости или расходятся - при закачке. Здесь скорости движения жидкости, градиенты давления, потери энергии, фильтрационные сопротивления максимальны. От состояния призабойной зоны пласта существенно зависит эффективность разработки месторождения, дебиты добывающих скважин, приемистость нагнетательных и та доля пластовой энергии, которая может быть использована на подъем жидкости непосредственно в скважине. Очень важно сохранить ПЗС в таком состоянии, чтобы энергия, расходуемая на преодоление фильтрационных сопротивлений ПЗС, была бы достаточно мала как при отборе жидкости из пласта, так и при нагнетании в пласт. В процессе добычи нефти вся извлекаемая пластовая жидкость - нефть, вода и газ - проходит через призабойные зоны добывающих скважин и вся нагнетаемая в пласты вода - через ПЗС нагнетательных скважин. Эти процессы происходят при температурах и давлениях, отличных от тех, при которых эти жидкости (или газы) были первоначально на поверхности или в пласте. В результате в ПЗС, как в фильтре, могут откладываться как различные углеводородные компоненты (смолы, асфальтены, парафины и др.), так и различные соли, выпадающие из растворов в результате нарушения термодинамического равновесия. Для снижения фильтрационных сопротивлений необходимо осуществлять мероприятия по воздействию на ПЗС для повышения проницаемости, улучшения сообщаемости со стволом скважины и увеличению системы трещин или каналов для облегчения притока и снижения энергетических потерь в этой ограниченной области пласта.

    5. Обработка скважин соляной кислотой (СКО). Кислотные ванны. Область применения, механизм воздействия.

    Обработка скважин соляной кислотой нашла наиболее широкое распространение вследствие своей сравнительной простоты, дешевизны и часто встречающихся благоприятных для ее применения пластовых условий.

    В нефтесодержащих породах нередко присутствуют в тех или иных количествах известняки, доломиты или карбонатные цементирующие вещества. Такие породы соляная кислота хорошо растворяет, при этом происходят следующие основные реакции.

    [1]

    При воздействии на известняк



    [2]

    При воздействии на доломит



    Хлористый кальций (CaCL2) и хлористый магний (MgCL2) - это соли, хорошо растворимые в воде - носителе кислоты, образующейся в результате реакции. Углекислый газ (CO2) также легки удаляется из скважины, либо при соответствующем давлении (свыше 7,6 МПа) растворяется в той же воде.

    [3]

    В количественных соотношениях реакция соляной кислоты с известняком запишется следующим образом:



    1) Хлорное железо (FeCL3), образующееся в результате гидролиза гидрата окиси железа [Fе(ОН)3], выпадающего в виде объемистого осадка.

    2) Серная кислота H2SO4 в растворе при ее взаимодействии с хлористым кальцием СаСL2 образует гипс (CaS04×2H2O), который удерживается в растворе лишь в незначительпых количествах. Основная масса гипса выпадает в осадок в виде волокнистой массы игольчатых кристаллов.

    3) Некоторые реагенты, вводимые в раствор кислоты в качестве антикоррозионных добавок (например, ингибитор ПБ-5).

    4) Фтористый водород и фосфорная кислота, которые при некоторых технологических схемах производства соляной кислоты в ней присутствуют и при реагировании с карбонатами образуют в пласте нерастворимые осадки фтористого кальция (CaF2) и фосфорнокислого кальция [Сa3 (РO4)2].

    Для обработки скважин обычно готовится раствор соляной кислоты с содержанием чистой НСL в пределах 10 - 15%, так как при большом ее содержании нейтрализованный раствор получается очень вязким, что затрудняет его выход из пор пласта. Температура замерзания 15 %-ного раствора НСL равна минус 32,8 °С.

     Кислотные ванны применяются во всех скважинах с открытым забоем после бурения и при освоении, для очистки поверхности забоя от остатков цементной и глинистой корки, продуктов коррозии, кальцитовых выделений из пластовых вод и др. Для скважин, забой которых обсажен колонной и перфорирован, кислотные ванны проводить не рекомендуют. Объем кислотного раствора должен быть равен объему скважины от забоя до кровли обрабатываемого интервала, а башмак НКТ, через который закачивают (раствор, спускается до подошвы пласта или забоя скважины. Применяется раствор НСL повышенной концентрации (15 - 20%), так как его перемешивания на забое не происходит.

    6. Кислотная обработка под давлением. Поинтервальная или ступенчатая солянокислотная обработка призабойной зоны пласта. Область применения, механизм воздействия.

    Для устранения недостатка, связанного со слоистой неоднородностью пласта, применяют кислотные обработки под повышенным давлением. При этом четко выраженные высокопроницаемые прослои изолируются пакерами или предварительной закачкой в эти прослои буфера - высоковязкой эмульсии типа кислота в нефти. Таким способом при последующей закачке кислотного раствора можно значительно увеличить охват пласта по толщине воздействием кислоты.

    Сначала на скважине проводятся обычные подготовительные мероприятия: удаление забойных пробок, парафиновых отложений, изоляция обводнившихся прослоев или создание на забое столба тяжелой жидкости в пределах обводнившегося низа скважины. Обычно перед проведением соляно-кислотная обработка под давлением продуктивный пласт изучается для выявления местоположения поглощающих прослоев п их толщины. Для предохранения обсадной колонны от высокого давления у кровли пласта на НКТ устанавливают пакер с якорем. Для изоляции или для снижения поглотительной способности высокопроницаемых прослоев в пласт нагнетают эмульсию.

    Эмульсию приготавливают прокачкой смеси 10 - 12%-ного раствора НСL и нефти центробежным насосом из одной емкости в другую. К легким нефтям добавляют присадки с эмульгирующими свойствами, например окисленный мазут, кислый газойль.

    Эмульсия обычно составляется из 70 % по объему раствора НСL и 30 % нефти. В зависимости от способа и времени перемешивания можно получить эмульсии различной вязкости, вплоть до 10 Па-с. При продолжительном перемешивании достигается большая дисперсность эмульсии и увеличение ее вязкости. Объемы нефтекислотной вязкой эмульсии для закачки в проницаемые прослои определяются объемом пор пласта в пределах предполагаемого радиуса закачки R, толщиной проницаемых прослоев h и их пористостью m по формуле

    [1]



    Обычно на 1 м толщины высокопроницаемого прослоя необходимо 1,5 - 2,5 м3 эмульсии. Рабочий раствор закачивается в тех же объемах, что и при простых СКО. Эмульсия в объеме НКТ и подпакерного пространства закачивается при открытом затрубном пространстве и негерметизированном пакере.

    Затем спущенным на НКТ пакером герметизируют кольцевое пространство, и в пласт закачивается оставшийся объем эмульсии под меньшим давлением. После эмульсии закачивается рабочий раствор НСL объемом, равным внутреннему объему НКТ, также при умеренном давлении, а по достижении кислотой башмака НКТ закачка продолжается на максимальных скоростях для создания на забое необходимого давления. После рабочего раствора НСL без снижения скорости закачивается продавочная жидкость объемом равным объему НКТ и подпакерного пространства. Время выдержки раствора для полной нейтрализации такое же, как и при простых СКО. После выдержки пакер с якорем и НКТ извлекаются, и скважина пускается в эксплуатацию.

    При вскрытии нескольких самостоятельных прослоев общим фильтром или общим открытым забоем, а также при вскрытии пласта большой толщины, в разрезе которого имеются интервалы с различной проницаемостью, одноразовая солянокислотная обработка всего интервала всегда положительно сказывается на наиболее проницаемом прослое. Другие прослои с ухудшенной гидропроводностью фактически остаются необработанными. В таких случаях применяют поинтервальную солянокислотную обработку, т.е. обработку каждого интервала пласта или пропластка. Для этого намечаемый для обработки интервал изолируется двумя пакерами, которые устанавливаются непосредственно у границ интервала или пропластка. Эффективность обработки существенно зависит от герметичности затрубного цементного камня, предотвращающего перетоки нагнетаемого раствора соляной кислоты по затрубному пространству в другие пропластки. При открытых забоях намеченный для СКО интервал также выделяют с помощью пакерных устройств. После обработки одного интервала и последующей его пробной эксплуатации для оценки полученных результатов переходят к СКО следующего интервала.

    7. Термокислотные обработки призабойной зоны пласта. Область применения, механизм воздействия.


    [1]

    Этот вид воздействия на призабойная зона скважина заключается в обработке забоя скважины горячей кислотой, нагрев которой происходит в результате экзотермической реакции соляной кислоты с магнием или некоторыми его сплавами (МЛ-1, МА-1 п др.) в специальном реакционном наконечнике, расположенном на конце НКТ, через который прокачивается рабочий раствор НСL. При этом происходит следующая реакция.



    Хлористый магний (MgCL2) остается в растворе.

    Необходимое количество 15%-ной соляной кислоты для получения различных температур раствора (на 1 кг Mg) приведено ниже.

    Количество НСL, л
















    Температура раствора, °С
















    Остаточная концентрация НСL, %

    9,6

    10,5




    11,4

    12,2

    Из уравнения баланса теплоты

    [2]



    следует что при реализации всей выделившейся теплоты Q кДж на нагрев V л раствора, имеющего теплоемкость Cv (кДж/л×°С), нагрев раствора произойдет на Dt °С или

    [3]

     .

    Термохимическая обработка ПЗС - обработка горячей кислотой, при которой для растворения магния подается избыточное количество кислоты для растворения карбонатов породы пласта так, чтобы сохранялась концентрация НСL 10 - 12 %.

    Термокислотная обработка ПЗС - сочетание термохимической и непрерывно следующей за ней кислотной обработки ПЗС. Причем кислотная обработка может быть как обычной, так и под давлением.

    8. Кислотные обработки терригенных коллекторов. Область применения, механизм воздействия.

    Особенность СКО терригенных коллекторов заключается в том, что кислота в них не формирует отдельные каналы, проникающие в пласт на различную глубину, как в карбонатных и тем более трещиноватых коллекторах.

    В данном случае кислотный раствор проникает в пласт более равномерно и контур ее проникновения близок к круговому. Однако радиус такого контура проникновения по толщине пласта будет различный в зависимости от проницаемости и пористости прослоев, которых в данном интервале может быть несколько. Если известны проницаемости, пористости, толщины и карбонатность отдельных прослоев в слоистонеоднородном пласте, то приближенно можно рассчитать глубину проникновения кислоты в пласт по прослоям при закачке данного объема раствора или наоборот, задаваясь глубинами проникновения кислоты по прослоям, можно определить необходимый объем растворов НС1.

    Другой особенностью СКО является то, что в карбонатных коллекторах кислота реагирует фактически с неограниченной массой карбонатного вещества по всей глубине образующегося канала, тогда как в терригенных карбонаты составляют всего лишь несколько процентов от общего объема породы. Поэтому фронт нагнетаемого раствора растворяет эти карбонаты и нейтрализуется, а последующие порции раствора, двигаясь по порам, в которых карбонаты уже удалены, сохраняет свою первоначальную активность. Это приводит к тому, что при последующем дренировании из скважины сначала поступает концентрированный раствор НСL, а за ним нейтрализованная кислота. Соляная кислота практически взаимодействует только с карбонатными компонентами, не вступая в реакцию с основной массой породы террпгепного коллектора, состоящего из силикатных веществ (кварц) и каолинов. Эти вещества взаимодействуют с фтористоводородной кислотой (HF), называемой также плавиковой.

    [1]

    Взаимодействие HF с кварцем происходит по следующей реакции:



    [2]

    Образующийся фтористый кремний SiF4 далее взаимодействует с водой



    [3]

    Кремнефтористоводородная кислота H2SiF6 остается в растворе, а кремниевая кислота Si(ОН)4 по мере снижения кислотности раствора может образовать студнеобразный гель, закупоривающий поры пласта. Для предотвращения этого фтористая кислота употребляется только в смеси с соляной кислотой для удержания кремниевой кислоты в растворе. Рабочий раствор кислоты для воздействия на терригенные коллекторы обычно содержит 8 - 10 % соляной кислоты и 3 - 5 % фтористоводородной. Фтористоводородная кислота растворяет алюмосиликаты согласно следующей реакции:



    Образующийся фтористый алюминий ALF3 остается в растворе, а фтористый кремний SiF4 далее взаимодействует с водой, образуя кремниевую кислоту.

    [4]

    Количественная оценка реакции дает следующие соотношения: 

    9. Тепловая обработка призабойной зоны пласта (закачка нагретого жидкого теплоносителя, электротепловая обработка). Область применения, механизм воздействия.

    Тепловая обработка ПЗС целесообразна при добыче тяжелых вязких нефтей или нефтей с высоким содержанием парафина и асфальтосмолистых компонентов (более 5 - 6%). Поскольку тепловая обработка ПЗС осуществляется периодически, то скважины должны быть сравнительно неглубокими (до 1300 м), чтобы после извлечения из скважины нагревательного оборудования можно было начать откачку жидкости при достаточно высокой температуре на забое.

    Призабойную зону скважины прогревают двумя способами:

    - закачкой в пласт на некоторую глубину теплоносителя - насыщенного или перегретого пара, растворителя, горячей воды или нефти;

    - спуском на забой скважины нагревательного устройства. Второй способ проще и дешевле.

    Прогревосуществляютсозданием циркуляции или продавливанием жидкости в пласт.

    При горячей промывке нагретые нефть или нефтепродукты закачивают через затрубное пространство, не останавливая работу скважины по подъемным (насосно-компрессорным) трубам. Горячий теплоноситель вытесняет «холодную» жидкость из затрубного пространства до башмака подъемных труб или приема насоса, частично растворяя парафин, отложившийся на стенках эксплуатационной колонны. При такой обработке тепловое воздействие на призабойную зону пласта весьма незначительно.

    Продавливаниегорячей жидкости в призабойную зону пласта эффективнее, но требует извлечения скважинного подземного оборудования и спуска насосно-компрессорных трубе пакером. Иногда призабойную зону пласта обрабатывают горячей нефтью с поверхностно-активными веществами (10— 12 м3 горячей нефти и 80—100 кг ПАВ). По истечении 6— 7 ч после обработки скважину пускают в работу.

    При использовании пластовой воды ее нагревают до 90— 95°С и добавляют ПАВ (0,5—1% объема воды). Приготовленную таким способом воду в количестве 70—80 м3 под давлением закачивают в скважину.

    Одним из наиболее эффективных методов теплового воздействия на призабойную зону пласта является прогрев ее паром. Перегретый водяной пар закачивают под давлением 8—15 МПа при следующих благоприятных условиях: глубина продуктивного пласта не более 1200 м, толщина пласта, сложенного песчаниками и глинами, не менее 15 м, вязкость нефти в пластовых условиях выше 50 мПа-с, остаточная нефтенасыщенность пласта не менее 50%, плотность нефти в пластовых условиях не менее 900—930 кг/м3. Не рекомендуется проведение паро-тепловой обработки на заводненных участках в связи с большим расходом тепла.

    Перед закачкой пара проводят исследование скважин: замер дебита нефти, газа и воды, пластового давления, температуры, статического уровня. Затем промывают забой, спускают насос- но-компрессорные трубы с термостойким пакером, который устанавливают над верхними отверстиями фильтра. В неглубоких скважинах (до 500—600 м) паро- тепловую обработку часто проводят без применения пакера. Для устранения опасных удлинений колонны насосно- компрессорных труб при закачке пара в пласт применяют специальное оборудование, состоящее из колонной головки, арматуры устья и скважинного компенсатора с телескопическим устройством.

    Пар для теплового прогрева скважин получают от передвижных паровых установок (ППУ), парогенераторных установок (ПГУ), монтируемых на шасси автомобиля высокой проходимости. Имеются установки производительностью до 5,5 т/ч пара с рабочим давлением до 10 МПа и температурой пара до 315 °С. Также применяют мощные автоматизированные передвижные парогенератор- ные установки типа УПГ-9/120 с подачей пара до 9 т/ч и рабочим давлением до 12 МПа. Установки укомплектованы системой КИП и автоматики. Управление работой оборудования осуществляется из кабины оператора. Парогенераторную установку (одну или несколько) соединяют трубопроводами высокого давления с устьем скважины. Пар из парогенератора своим давлением вытесняет нефть из НКТ и поступает в пласт. После закачки пара (не менее 100Q т) устье скважины герметизируют на 2—5 сут для передачи тепла в глубь пласта. Затем извлекают НКТ, спускают насосное оборудование и скважину вводят в эксплуатацию.

    Тепловая обработка ПЗС с циклической закачкой пара, как правило, показывает большую эффективность, чем электропрогрев, но только при малых глубинах. При закачке пара количество тепловой энергии, введенной в пласт, зависит от глубины забоя, так как от устья до забоя происходят тепловые потери. По данным промысловых работ закачка пара с расходом 1 т/ч при глубине 800 м вообще оказывается неэффективной, так как на забой поступает практически холодный конденсат. Чем выше скорость закачки, тем меньше тепловые потери в НКТ. Теоретические и опытные оценки показывают, что лишь при темпах закачки 4 - 5 т/ч удается уменьшить тепловые потери в НКТ до 20 % от общего количества теплоты, подводимой к устью скважины при ее глубине около 800 м. Таким образом, эффективность циклической закачки пара может быть высокой при малых глубинах.

     

    10. Сущность гидравлического разрыва пласта. Технология гидравлического разрыва пласта (ГРП). Область применения, механизм воздействия.

    Гидроразрыв пласта состоит из трех принципиальных операций:

    а) создание в коллекторе искусственных трещин (или расширение естественных);

    б) закачка по НКТ в ПЗС жидкости с наполнителем трещин;

    в) продавка жидкости с наполнителем в трещины для их закрепления.

    При этих операциях используют три категории жидкостей:

    · жидкость разрыва,

    · жидкость-песконоситель

    · продавочную жидкость.

    Рабочие агенты должны удовлетворять следующим требованиям:

    1. Не должны уменьшать проницаемость ПЗС. При этом, в зависимости от категории скважины (добывающая; нагнетательная; добывающая, переводимая под нагнетание воды), используются различные по своей природе рабочие жидкости.

    2. Контакт рабочих жидкостей с горной породой ПЗС или с пластовыми флюидами не должен вызывать никаких отрицательных физико-химических реакций, за исключением случаев применения специальных рабочих агентов с контролируемым и направленным действием.

    3. Не должны содержать значительного количества посторонних механических примесей (т.е. их содержание регламентируется для каждого рабочего агента).

    4. При использовании специальных рабочих агентов, например, нефтекислотной эмульсии, продукты химических реакций должны быть полностью растворимыми в продукции пласта и не снижать проницаемости ПЗС.

    5. Вязкость используемых рабочих жидкостей должна быть стабильной и иметь низкую температуру застывания в зимнее время (в противном случае процесс ГРП должен проводиться с использованием подогрева).6. Должны быть легкодоступными, недефицитными и недорогостоящими.


    написать администратору сайта