Главная страница
Навигация по странице:

  • Алгоритмы планирования процессов

  • 44. Ограничение на использование ОП

  • Типы адресов

  • Алгоритмы распределения памяти

  • Распределение памяти фиксированными разделами

  • Распределение памяти динамическими разделами

  • Перемещаемые разделы

  • 45. Файловая система в MS-DOS

  • ос и с. ОСиС. 1. Классификация программного обеспечения


    Скачать 2.7 Mb.
    Название1. Классификация программного обеспечения
    Анкорос и с
    Дата11.12.2022
    Размер2.7 Mb.
    Формат файлаdoc
    Имя файлаОСиС.doc
    ТипДокументы
    #839260
    страница19 из 29
    1   ...   15   16   17   18   19   20   21   22   ...   29

    Контекст и дескриптор процесса
    На протяжении существования процесса его выполнение может быть многократно прервано и продолжено. Для того, чтобы возобновить выполнение процесса, необходимо восстановить состояние его операционной среды. Состояние операционной среды отображается состоянием регистров и программного счетчика, режимом работы процессора, указателями на открытые файлы, информацией о незавершенных операциях ввода-вывода, кодами ошибок выполняемых данным процессом системных вызовов и т.д. Эта информация называется контекстом процесса.

    Кроме этого, операционной системе для реализации планирования процессов требуется дополнительная информация: идентификатор процесса, состояние процесса, данные о степени привилегированности процесса, место нахождения кодового сегмента и другая информация. В некоторых ОС (например, в ОС MS - DOS) информацию такого рода, используемую ОС для планирования процессов, называют дескриптором процесса.

    Дескриптор процесса по сравнению с контекстом содержит более оперативную информацию, которая должна быть легко доступна подсистеме планирования процессов. Контекст процесса содержит менее актуальную информацию и используется операционной системой только после того, как принято решение о возобновлении прерванного процесса.

    Очереди процессов представляют собой дескрипторы отдельных процессов, объединенные в списки. Таким образом, каждый дескриптор, кроме всего прочего, содержит по крайней мере один указатель на другой дескриптор, соседствующий с ним в очереди. Такая организация очередей позволяет легко их переупорядочивать, включать и исключать процессы, переводить процессы из одного состояния в другое.

    Программный код только тогда начнет выполняться, когда для него операционной системой будет создан процесс. Создать процесс - это значит:


    1. создать информационные структуры, описывающие данный процесс, то есть его дескриптор и контекст;

    2. включить дескриптор нового процесса в очередь готовых процессов;

    3. загрузить кодовый сегмент процесса в оперативную память или в область свопинга.


    Алгоритмы планирования процессов
    Планирование процессов включает в себя решение следующих задач:


    1. определение момента времени для смены выполняемого процесса;

    2. выбор процесса на выполнение из очереди готовых процессов;

    3. переключение контекстов "старого" и "нового" процессов.


    Первые две задачи решаются программными средствами, а последняя в значительной степени аппаратно (см. раздел 2.3. "Средства аппаратной поддержки управления памятью и многозадачной среды в микропроцессорах Intel 80386, 80486 и Pentium").

    Существует множество различных алгоритмов планирования процессов, по разному решающих вышеперечисленные задачи, преследующих различные цели и обеспечивающих различное качество мультипрограммирования. Среди этого множества алгоритмов рассмотрим подробнее две группы наиболее часто встречающихся алгоритмов: алгоритмы, основанные на квантовании, и алгоритмы, основанные на приоритетах.

    В соответствии с алгоритмами, основанными на квантовании, смена активного процесса происходит, если:


    • процесс завершился и покинул систему,

    • произошла ошибка,

    • процесс перешел в состояние ОЖИДАНИЕ,

    • исчерпан квант процессорного времени, отведенный данному процессу.


    Процесс, который исчерпал свой квант, переводится в состояние ГОТОВНОСТЬ и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение в соответствии с определенным правилом выбирается новый процесс из очереди готовых. Таким образом, ни один процесс не занимает процессор надолго, поэтому квантование широко используется в системах разделения времени. Граф состояний процесса, изображенный на рисунке 2.1, соответствует алгоритму планирования, основанному на квантовании.

    Кванты, выделяемые процессам, могут быть одинаковыми для всех процессов или различными. Кванты, выделяемые одному процессу, могут быть фиксированной величины или изменяться в разные периоды жизни процесса. Процессы, которые не полностью использовали выделенный им квант (например, из-за ухода на выполнение операций ввода-вывода), могут получить или не получить компенсацию в виде привилегий при последующем обслуживании. По разному может быть организована очередь готовых процессов: циклически, по правилу "первый пришел - первый обслужился" (FIFO) или по правилу "последний пришел - первый обслужился" (LIFO).

    Другая группа алгоритмов использует понятие "приоритет" процесса. Приоритет - это число, характеризующее степень привилегированности процесса при использовании ресурсов вычислительной машины, в частности, процессорного времени: чем выше приоритет, тем выше привилегии.

    Приоритет может выражаться целыми или дробными, положительным или отрицательным значением.Чем выше привилегии процесса, тем меньше времени он будет проводить в очередях. Приоритет может назначаться директивно администратором системы в зависимости от важности работы или внесенной платы, либо вычисляться самой ОС по определенным правилам, он может оставаться фиксированным на протяжении всей жизни процесса либо изменяться во времени в соответствии с некоторым законом. В последнем случае приоритеты называются динамическими.

    Существует две разновидности приоритетных алгоритмов: алгоритмы, использующие относительные приоритеты, и алгоритмы, использующие абсолютные приоритеты.

    В обоих случаях выбор процесса на выполнение из очереди готовых осуществляется одинаково: выбирается процесс, имеющий наивысший приоритет. По разному решается проблема определения момента смены активного процесса. В системах с относительными приоритетами активный процесс выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ОЖИДАНИЕ (или же произойдет ошибка, или процесс завершится). В системах с абсолютными приоритетами выполнение активного процесса прерывается еще при одном условии: если в очереди готовых процессов появился процесс, приоритет которого выше приоритета активного процесса. В этом случае прерванный процесс переходит в состояние готовности. На рисунке 2.2 показаны графы состояний процесса для алгоритмов с относительными (а) и абсолютными (б) приоритетами.



    Рис. 2.2. Графы состояний процессов в системах
    (а) с относительными приоритетами; (б)с абсолютными приоритетами

    Во многих операционных системах алгоритмы планирования построены с использованием как квантования, так и приоритетов. Например, в основе планирования лежит квантование, но величина кванта и/или порядок выбора процесса из очереди готовых определяется приоритетами процессов.
    44. Ограничение на использование ОП
    Функции ОС по управлению памятью

    Под памятью (memory) здесь подразумевается оперативная память компьютера. В отличие от памяти жесткого диска, которую называют внешней памятью (storage), оперативной памяти для сохранения информации требуется постоянное электропитание.

    Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Особая роль памяти объясняется тем, что процессор может выполнять инструкции программы только в том случае, если они находятся в памяти. Память распределяется как между модулями прикладных программ, так и между модулями самой операционной системы.

    В ранних ОС управление памятью сводилось просто к загрузке программы и ее данных из некоторого внешнего накопителя (перфоленты, магнитной ленты или магнитного диска) в память. С появлением мультипрограммирования перед ОС были поставлены новые задачи, связанные с распределением имеющейся памяти между несколькими одновременно выполняющимися программами.

    Функциями ОС по управлению памятью в мультипрограммной системе являются:

    • отслеживание свободной и занятой памяти;

    • выделение памяти процессам и освобождение памяти по завершении процессов;

    • вытеснение кодов и данных процессов из оперативной памяти на диск (полное или частичное), когда размеры основной памяти не достаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место;

    • настройка адресов программы на конкретную область физической памяти.

    Помимо первоначального выделения памяти процессам при их создании ОС должна также заниматься динамическим распределением памяти, то есть выполнять запросы приложений на выделение им дополнительной памяти во время выполнения. После того как приложение перестает нуждаться в дополнительной памяти, оно может возвратить ее системе. Выделение памяти случайной длины в случайные моменты времени из общего пула памяти приводит к фрагментации и, вследствие этого, к неэффективному ее использованию. Дефрагментация памяти тоже является функцией операционной системы.

    Во время работы операционной системы ей часто приходится создавать новые служебные информационные структуры, такие как описатели процессов и потоков, различные таблицы распределения ресурсов, буферы, используемые процессами для обмена данными, синхронизирующие объекты и т. п. Все эти системные объекты требуют памяти. В некоторых ОС заранее (во время установки) резервируется некоторый фиксированный объем памяти для системных нужд. В других же ОС используется более гибкий подход, при котором память для системных целей выделяется динамически. В таком случае разные подсистемы ОС при создании своих таблиц, объектов, структур и т. п. обращаются к подсистеме управления памятью с запросами.

    Защита памяти — это еще одна важная задача операционной системы, которая состоит в том, чтобы не позволить выполняемому процессу записывать или читать данные из памяти, назначенной другому процессу. Эта функция, как правило, реализуется программными модулями ОС в тесном взаимодействии с аппаратными средствами.

    Типы адресов

    Для идентификации переменных и команд на разных этапах жизненного цикла программы используются символьные имена (метки), виртуальные адреса и физические адреса (рис. 5.1).

    • Символьные имена присваивает пользователь при написании программы на алгоритмическом языке или ассемблере.

    • Виртуальные адреса, называемые иногда математическими, или логическими адресами, вырабатывает транслятор, переводящий программу на машинный язык. Поскольку во время трансляции в общем случае не известно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные (условные) адреса, обычно считая по умолчанию, что начальным адресом программы будет нулевой адрес.

    • Физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположен или будут расположены переменные и команды.

    Совокупность виртуальных адресов процесса называется виртуальным адресным пространством. Диапазон возможный адресов виртуального пространства у всех процессов является одним и тем же. Например, при использовании 32-разрядных виртуальных адресов этот диапазон задается границами 0000000016 и FFFFFFFF16. Тем не менее каждый процесс имеет собственное виртуальное адресное пространство — транслятор присваивает виртуальные адреса переменным



    Совпадение виртуальных адресов переменных и команд различных процессов не приводит к конфликтам, так как в том случае, когда эти переменные одновременно присутствуют в памяти, операционная система отображает их на разные физические адреса.

    В разных операционных системах используются разные способы структуризации виртуального адресного пространства. В одних ОС виртуальное адресное пространство процесса подобно физической памяти представлено в виде непрерывной линейной последовательности виртуальных адресов. Такую структуру адресного пространства называют также плоской (flat). При этом виртуальным адресом является единственное число, представляющее собой смещение относительно начала (обычно это значение 000...000) виртуального адресного пространства (рис. 5.3, а). Адрес такого типа называют линейным виртуальным адресом.

    В других ОС виртуальное адресное пространство делится на части, называемые сегментами (или секциями, или областями, или другими терминами). В этом случае помимо линейного адреса может быть использован виртуальный адрес, представляющий собой пару чисел (п, т), где п определяет сегмент, а т — смещение внутри сегмента (рис. 5.3, б).

    Существуют и более сложные способы структуризации виртуального адресного пространства, когда виртуальный адрес образуется тремя или даже более числами.



    Задачей операционной системы является отображение индивидуальных виртуальных адресных пространств всех одновременно выполняющихся процессов на общую физическую память. При этом ОС отображает либо все виртуальное адресное пространство, либо только определенную его часть. Процедура преобразования виртуальных адресов в физические должна быть максимально прозрачна для пользователя и программиста.

    Существуют два принципиально отличающихся подхода к преобразованию виртуальных адресов в физические.

    В первом случае замена виртуальных адресов на физические выполняется один раз для каждого процесса во время начальной загрузки программы в память. Специальная системная программа — перемещающий загрузчик — на основании имеющихся у нее исходных данных о начальном адресе физической памяти, в которую предстоит загружать программу, а также информации, предоставленной транслятором об адресно-зависимых элементах программы, выполняет загрузку программы, совмещая ее с заменой виртуальных адресов физическими.

    Второй способ заключается в том, что программа загружается в память в неизмененном виде в виртуальных адресах, то есть операнды инструкций и адреса переходов имеют те значения, которые выработал транслятор. В наиболее простом случае, когда виртуальная и физическая память процесса представляют собой единые непрерывные области адресов, операционная система выполняет преобразование виртуальных адресов в физические по следующей схеме. При загрузке операционная система фиксирует смещение действительного расположения программного кода относительно виртуального адресного пространства. Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Схема такого преобразования показана на рис. 5.4. Пусть, например, операционная система использует линейно-структурированное виртуальное адресное пространство и пусть некоторая программа, работающая под управлением этой ОС, загружена в физическую память начиная с физического адреса S. ОС запоминает значение начального смещения S и во время выполнения программы помещает его в специальный регистр процессора. При обращении к памяти виртуальные адреса данной программы преобразуются в физические путем прибавления к ним смещения S. Например, при выполнении инструкции MOV пересылки данных, находящихся по адресу VA, виртуальный адрес VA заменяется физическим адресом VA+S.



    Последний способ является более гибким: в то время как перемещающий загрузчик жестко привязывает программу к первоначально выделенному ей участку памяти, динамическое преобразование виртуальных адресов позволяет перемещать программный код процесса в течение всего периода его выполнения. Но использование перемещающего загрузчика более экономично, так как в этом случае преобразование каждого виртуального адреса происходит только один раз во время загрузки, а при динамическом преобразовании — при каждом обращении по данному адресу

    В некоторых случаях (обычно в специализированных системах), когда заранее точно известно, в какой области оперативной памяти будет выполняться программа, транслятор выдает исполняемый код сразу в физических адресах

    Необходимо различать максимально возможное виртуальное адресное пространство процесса и назначенное (выделенное) процессу виртуальное адресное пространство. В первом случае речь идет о максимальном размере виртуального адресного пространства, определяемом архитектурой компьютера, на котором работает ОС, и, в частности, разрядностью его схем адресации (32-битная, 64-битная и т.п. Например, при работе на компьютерах с 32-разрядными процессорами Intel Pentium операционная система может предоставить каждому процессу виртуальное адресное пространство до 4 Гбайт (232) Однако это значение представляет собой только потенциально возможный размер виртуального адресного пространства, который редко на практике бывает необходим процессу. Процесс использует только часть доступного ему виртуального адресного пространства.

    Назначенное виртуальное адресное пространство представляет собой набор виртуальных адресов, действительно нужных процессу для работы. Эти адреса первоначально назначает программе транслятор на основании текста программы, когда создает кодовый (текстовый) сегмент, а также сегмент или сегменты данных, с которыми программа работает Затем при создании процесса ОС фиксирует назначенное виртуальное адресное пространство в своих системных таблицах. В ходе своего выполнения процесс может увеличить размер первоначального назначенного ему виртуального адресного пространства, запросив у ОС создания дополнительных сегментов или увеличения размера существующих. В любом случае операционная система обычно следит за корректностью использования процессом виртуальных адресов — процессу не разрешается оперировать с виртуальным адресом, выходящим за пределы назначенных ему сегментов

    Максимальный размер виртуального адресного пространства ограничивается только разрядностью адреса, присущей данной архитектуре компьютера, и, как правило, не совпадает с объемом физической памяти, имеющимся в компьютере.

    Сегодня для машин универсального назначения типична ситуация, когда объем виртуального адресного пространства превышает доступный объем оперативной памяти. В таком случае операционная система для хранения данных виртуального адресного пространства процесса, не помещающихся в оперативную память, использует внешнюю память, которая в современных компьютерах представлена жесткими дисками (рис. 5.5, а). Именно .на этом принципе основана виртуальная память — наиболее совершенный механизм, используемый в операционных системах для управления памятью.



    Однако соотношение объемов виртуальной и физической памяти может быть и обратным. Так, в мини-компьютерах 80-х годов разрядности поля адреса нередко не хватало для того, чтобы охватить всю имеющуюся оперативную память. Несколько процессов могло быть загружено в память одновременно и целиком (рис. 5.5, б).

    Необходимо подчеркнуть, что виртуальное адресное пространство и виртуальная память — это различные механизмы и они не обязательно реализуются в операционной системе одновременно. Можно представить себе ОС, в которой поддерживаются виртуальные адресные пространства для процессов, но отсутствует механизм виртуальной памяти. Это возможно только в том случае, если размер виртуального адресного пространства каждого процесса меньше объема физической памяти.

    Содержимое назначенного процессу виртуального адресного пространства, то есть коды команд, исходные и промежуточные данные, а также результаты вычислений, представляет собой образ процесса.

    Во время работы процесса постоянно выполняются переходы от прикладных кодов к кодам ОС, которые либо явно вызываются из прикладных процессов как системные функции, либо вызываются как реакция на внешние события или на исключительные ситуации, возникающие при некорректном поведении прикладных кодов. Для того чтобы упростить передачу управления от прикладного кода к коду ОС, а также для легкого доступа модулей ОС к прикладным данным (например, для вывода их на внешнее устройство), в большинстве ОС ее сегменты разделяют виртуальное адресное пространство с прикладными сегментами активного процесса. То есть сегменты ОС и сегменты активного процесса образуют единое виртуальное адресное пространство.

    Обычно виртуальное адресное пространство процесса делится на две непрерывные части: системную и пользовательскую. В некоторых ОС (например, Windows NT, OS/2) эти части имеют одинаковый размер — но 2 Гбайт, хотя в принципе деление может быть и другим, например 1 Гбайт — для ОС, и 2 Гбайт — для прикладных программ1. Часть виртуального адресного пространства каждого процесса, отводимая под сегменты ОС, является идентичной для всех процессов. Поэтому при смене активного процесса заменяется только вторая часть виртуального адресного пространства, содержащая его индивидуальные сегменты, как правило, — коды и данные прикладной программы (рис. 5.6). Архитектура современных процессоров отражает эту особенность структуры виртуального адресного пространства, например, в процессорах Intel Pentium существует два типа системных таблиц: одна — для описания сегментов, общих для всех процессов, а другая — для описания индивидуальных сегментов данного процесса. При смене процесса первая таблица остается неизменной, а вторая заменяется новой.



    Описанное выше назначение двух частей виртуального адресного пространства — для сегментов ОС и для сегментов прикладной программы — является типичным, но не абсолютным. Имеются и исключения из общего правила. В некоторых ОС существуют системные процессы, порожденные для решения внутренних задач ОС. В этих процессах отсутствуют сегменты прикладной программы, но они могут расположить некоторые свои сегменты (сегменты ОС) в общей части виртуального адресного пространства, а некоторые — в индивидуальной части, обычно предназначенной для прикладных сегментов. И наоборот, в общей, системной части виртуального адресного пространства размещаются сегменты прикладного кода, предназначенные для совместного использования несколькими прикладными процессами.

    Механизм страничной памяти в большинстве универсальных операционных систем применяется ко всем сегментам пользовательской части виртуального адресного пространства процесса. Исключения могут составлять специализированные ОС, например ОС реального времени, в которых некоторые сегменты жестко фиксируются в оперативной памяти и соответственно никогда не выгружаются на диск — это обеспечивает быструю реакцию определенных приложений на внешние события.

    Системная часть виртуальной памяти в ОС любого типа включает область, подвергаемую страничному вытеснению (paged), и область, на которую страничное вытеснение не распространяется (non-paged). В не вытесняемой области размещаются модули ОС, требующие быстрой реакции и/или постоянного присутствия в памяти, например диспетчер потоков или код, который управляет заменой страниц памяти. Остальные модули ОС подвергаются страничному вытеснению, как и пользовательские сегменты.

    Обычно аппаратура накладывает свои ограничения на порядок использования виртуального адресного пространства. Некоторые процессоры (например, MIPS) предусматривают для определенной области системной части адресного пространства особые правила отображения на физическую память. При этом виртуальный адрес прямо отображается на физический адрес (последний либо полностью соответствует виртуальному адресу, либо равен его части). Такая особая область памяти не подвергается страничному вытеснению, и поскольку достаточно трудоемкая процедура преобразования адресов исключается, то доступ к располагаемым здесь кодам и данным осуществляется очень быстро.

    Алгоритмы распределения памяти

    Следует ли назначать каждому процессу одну непрерывную область физической памяти или можно выделять память “кусками”? Должны ли сегменты программы, загруженные в память, находиться на одном месте в течение всего периода выполнения процесса или можно ее время от времени сдвигать? Что делать, если сегменты программы не помещаются в имеющуюся память? Разные ОС по-разному отвечают на эти и другие базовые вопросы управления памятью. Далее будут рассмотрены наиболее общие подходы к распределению памяти, которые были характерны для разных периодов развития операционных систем. Некоторые из них сохранили актуальность и широко используются в современных ОС, другие же представляют в основном только познавательный интерес, хотя их и сегодня можно встретить в специализированных системах.

    На рис. 5.7 все алгоритмы распределения памяти разделены на два класса: алгоритмы, в которых используется перемещение сегментов процессов между оперативной памятью и диском, и алгоритмы„в которых внешняя память не привлекается.



    Распределение памяти фиксированными разделами

    Простейший способ управления оперативной памятью состоит в том, что память разбивается на несколько областей фиксированной величины, называемых разделами. Такое разбиение может быть выполнено вручную оператором во время старта системы или во время ее установки. После этого границы разделов не изменяются.

    Очередной новый процесс, поступивший на выполнение, помещается либо в общую очередь (рис. 5.8, а), либо в очередь к некоторому разделу (рис. 5.8, б).



    одсистема управления памятью в этом случае выполняет следующие задачи.

    • Сравнивает объем памяти, требуемый для вновь поступившего процесса, с размерами свободных разделов и выбирает подходящий раздел.

    • Осуществляет загрузку программы в один из разделов и настройку адресов. Уже на этапе трансляции разработчик программы может задать раздел, в котором ее следует выполнять. Это позволяет сразу, без использования перемещающего загрузчика, получить машинный код, настроенный на конкретную область памяти.

    При очевидном преимуществе — простоте реализации, данный метод имеет существенный недостаток — жесткость. Так как в каждом разделе может выполняться только один процесс, то уровень мультипрограммирования заранее ограничен числом разделов Независимо от размера программы она будет занимать весь раздел. Так, например, в системе с тремя разделами невозможно выполнять одновременно более трех процессов, даже если им требуется совсем мало памяти. С другой стороны, разбиение памяти на разделы не позволяет выполнять процессы, программы которых не помещаются ни в один из разделов, но для которых было бы достаточно памяти нескольких разделов.

    Такой способ управления памятью применялся в ранних мультипрограммных ОС. Однако и сейчас метод распределения памяти фиксированными разделами находит применение в системах реального времени, в основном благодаря небольшим затратам на реализацию. Детерминированность вычислительного процесса систем реального времени (заранее известен набор выполняемых задач, их требования к памяти, а иногда и моменты запуска) компенсирует недостаточную гибкость данного способа управления памятью.

    Распределение памяти динамическими разделами

    В этом случае память машины не делится заранее на разделы. Сначала вся память, отводимая для приложений, свободна. Каждому вновь поступающему на выполнение приложению на этапе создания процесса выделяется вся необходимая ему память (если достаточный объем памяти отсутствует, то приложение не принимается на выполнение и процесс для него не создается). После завершения процесса память освобождается, и на это место может быть загружен другой процесс. Таким образом, в произвольный момент времени оперативная память представляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера На рис. 5 9 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так, в момент t0 в памяти находится только ОС, а к моменту tl память разделена между 5 процессами, причем процесс П4, завершаясь, покидает память. На освободившееся от процесса П4 место загружается процесс П6, поступивший в момент Ј3

    Функции операционной системы, предназначенные для реализации данного метода управления памятью, перечислены ниже

    • Ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти.

    • При создании нового процесса — анализ требований к памяти, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения кодов и данных нового процесса. Выбор раздела может осуществляться по разным правилам, например: “первый попавшийся раздел достаточного размера”, “раздел, имеющий наименьший достаточный размер” или “раздел, имеющий наибольший достаточный размер”.

    • Загрузка программы в выделенный ей раздел и корректировка таблиц свободных и занятых областей. Данный способ предполагает, что программный код не перемещается во время выполнения, а значит, настройка адресов может быть проведена единовременно во время загрузки.

    • После завершения процесса корректировка таблиц свободных и занятых областей.



    По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный недостаток — фрагментация памяти. Фрагментация — это наличие большого числа несмежных участков свободной памяти очень маленького размера (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти.

    Распределение памяти динамическими разделами лежит в основе подсистем управления памятью многих мультипрограммных операционных системах 60-70-х годов, в частности такой популярной операционной системы, как OS/360.

    |

    Перемещаемые разделы

    Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших или младших адресов, так, чтобы вся свободная память образовала единую свободную область (рис. 5.10). В дополнение к функциям, которые выполняет ОС при распределении памяти динамическими разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется сжатием. Сжатие может выполняться либо при каждом завершении процесса, либо только тогда, когда для вновь создаваемого процесса нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц свободных и занятых областей, а во втором — реже выполняется процедура сжатия.



    Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то в данном случае невозможно выполнить настройку адресов с помощью перемещающего загрузчика. Здесь более подходящим оказывается динамическое преобразование адресов.

    Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.

    Концепция сжатия применяется и при использовании других методов распределения памяти, когда отдельному процессу выделяется не одна сплошная область памяти, а несколько несмежных участков памяти произвольного размера (сегментов). Такой подход был использован в ранних версиях OS/2, в которых память распределялась сегментами, а возникавшая при этом фрагментация устранялась путем периодического перемещения сегментов.
    45. Файловая система в MS-DOS
    Предназначена для хранения информации и как средство обмена информацией между компьютерами. Может использоваться для организации небольшого архива.

    Носителем информации является магнитный слой на поверхности диска. Для записи/считывания используется ДИСКОВОД.

    Дисководы и диски различаются:

    • Размером;

    • Возможностью извлечения дисков из дисководов;

    • Скоростью вращения дисков;

    • Количеством дисков на одном приводе (размером пакета дисков);

    • Способом кодирования информации при записи (емкостью);

    • Физическим способом записи информации (направлением вектора намагниченности).

    Организация пакета магнитных дисков:

    • Пакет состоит из одного или нескольких дисков;

    • Каждый диск имеет одну или две рабочие поверхности;

    • Каждая поверхность логически разбита на концентрические окружности, имеюшие номера - ДОРОЖКИ (ТРЕКИ);

    • Дорожки с одном номером, но на разных дисках образуют ЦИЛИНДР, а дорожки его образующие называются ПОВЕРХНОСТЯМИ ЦИЛИНДРА, не все физические поверхности используются для хранения информации;

    • Каждая дорожка логически разбита на СЕКТОРА, имеющие номера;

    • Каждый сектор может быть поделен на БЛОКИ, имеющие номера;

    • Каждый блок (или сектор) имеет ЗАГОЛОВОК и СОБСТВЕННО БЛОК;

    • Блоки (или сектора) могут объединяться в КЛАСТЕРЫ, размер кластера кратен степени числа два. В этом случае дисковое пространство выделяется кластерами.

    • Физически присутствует одна или более меток для обозначения начала цилиндра и секторов.

    Таким образом для обращения к диску необходимо указать: номер дорожки, номер поверхности (головки), номер сектора и номер блока.
    Нумерация головок и цилиндров начанается с нуля, а секторов с единицы.

    Операционная система MS DOS не делит сектора на блоки, кроме этого в большинстве случаев ЛОГИЧЕСКИ производится сквозная нумерация в системе: цилиндр - поверхность - сектор с адресацией через сектора.

    Форматы гибких дисков.

    Гибкие диски можно классифицировать по нескольким параметрам (см. выше).
    Для программиста наиболее интересно деление по двум признакам:

    1 Загрузочный диск или нет. На диске может быть записана операционная система; в этом случае диск считается загрузочным. Такой диск на нулевом цилиндре, нулевой поверхности в секторе один хранит программу начальной загрузки. Когда BIOS пытается загрузить ОС производится считывание загрузочного сектора и проверяются последние два байта; если там записана последовательность 55h, AAh то диск считается загрузочным и считанному фрагменту передается управление.

    2 Емкость диска. Для указания емкости служит байт, распологающийся первым в таблице размещения файлов:

    • FEh 160К

    • F9h 1.2М 5-дюймов или 720К 3-дюйма

    • FFh 320К

    • F0h 1.44М

    • FCh 180К

    • F8h фиксированный диск

    • FDh 360К

    Пользователь может придумывать свои форматы дисков, но желательно сохранение совместимости. Существуют драйверы, способные работать с нестандартными (в некоторых пределах) разметками дисков.

    Форматы фиксированных дисков

    Форматы фиксированых дисков более разнообразны, чем форматы гибких. Это объясняется стремлением фирм производителей получить максимальную емкость и тем, что такой диск не покидает корпуса компьютера. Поскольку емкость фиксированного диска значительна, доступное пространство может быть поделено на РАЗДЕЛЫ. Работа с каждым разделом происходит независимо от других и каждый из них может иметь свой загрузочный сектор и свою ОС. Возможно иметь четыре раздела.

    Первый сектор фиксированного диска содержит 64-байтовую таблицу разделов, начинающуюся со смещения 1BEh. Для описания раздела отводится 16 байт:

    0 Индикатор загрузки (80h - загружаемый, 0 - нет);

    1 Начальный номер головки;

    2,3 Начальный номер цилиндра (10 битов) и номер сектора (6 битов);

    4 Сиситемный индикатор:

    1 - первичный раздел DOS, 12 - битовая FAT

    2 - XENIX

    4 - первичный раздел DOS, 16 - битовая FAT

    5 - расширенный раздел DOS

    8 - раздел, отличный от DOS;

    5 Последний номер головки;

    6,7 Последний номер цилиндра и сектора;

    8,9,А,В Начальный сектор (относительно начала диска);

    С,D,E,F Число секторов в разделе.

    ВНИМАНИЕ: Искажение таблици разделов может привести к полной потере информации на диске!

    Логическая организация диска (раздела).

    При форматировании дискеты или раздела фиксированного диска создается его логическая структура, состоящая из четырех компанент:

    1 Резервируемая область - несколько секторов, одним из которых является загрузочный сектор;

    2 Таблица размещения файлов (FAT) - отображает использование дискового пространства. Размер области зависит от размера диска или раздела.
    Достаточно часто таблица дублируется;

    3 Корневой каталог - содержит основную информацию о файлах. Его размер также зависит от размера диска или раздела;

    4 Область файлов и подкаталогов - оснавная (полезная) часть дискового пространства.

    диск

    емкость

    зарез.область

    FAT

    корн.каталог

    кластер

    5

    360К

    1

    4

    7

    2

    5

    1.2М

    1

    14

    14

    1

    3

    720К

    1

    6

    7

    2

    3

    1.44М

    1

    18

    14

    1
    1   ...   15   16   17   18   19   20   21   22   ...   29


    написать администратору сайта