БИОЛОГИЯ. 1. клетка как элементрнаяа един живого клет теория
Скачать 0.97 Mb.
|
Аппарат Гольджи асимметричен — цистерны, располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭР), на мембранах которого и происходит синтез белков рибосомами. Перемещение белков из эндоплазматической сети (ЭПС) в аппарат Гольджи происходит неизбирательно, однако не полностью или неправильно свернутые белки остаются при этом в ЭПС. Возвращение белков из аппарата Гольджи в ЭПС требует наличия специфической сигнальной последовательности (лизин-аспарагин-глутамин-лейцин) и происходит благодаря связыванию этих белков с мембранными рецепторами в цис-Гольджи. В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т. д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их модификации — гликозилирование и фосфорилирование. ФУНКЦИИ: 1) синтез полисахаридов 2) модификация и окончат созрев всех органич в-в. 3) синтез сложных молеку.(гликолипиды и гликопротеиды. 4) секреция с помощью пузырьков Гольджи. (выводят из клетки синтезир в-во). 5) обновление мембран. (когда секретор пузырёк встраивается в плазмолемму его содержимое вывод их клетки, а сам он становится частью мембраны). 6) участие в выделении растительной клетки. 7) сигрегация (разделение синтезированных в-в на 3 основных потока) это: -собств структура клетки (мембр белки); -секреторные белки; - ферменты лизосом. 8) формирование первичных лизосом. 9. лизосомы - это субмикроскопический одномембранный органоид общего назначения, осущ внутриклет пищеварение. Лизосомы окруж одинарн мембраной и заполнены однородным густозернистым содержимым скислой реакцией среды. В Лиз. содерж около 50 гидролитических ферментов (протеаз, нуклеаз, гликозидаз, липаз, фосфорилаз). Ферменты лизосом – гидролазы (расшепл белки, нукл кислоты, полисахариды, липиды и другие в-ва). С помощью ферментов лизосомы выполняют функцию лизирования. При этом лизосома сливается и пиноцитозными и фагоцитозными вакуолями и изливает в них своё содержимое. мембрана лизосом: 1) содержит рецепторы, обеспецивающиееё связывание с мембраной транспортных пузырьков и фагосом. 2) обеспечивает свободную диффузию продуктов пищеварения. 3) барьерная функция. 4) содержит протынный насос. ПО происхождению лизосомы – производные комплекса гольджи. Ферменты лизосом синтезируются на грЭПС и транспортируются в транспорт пузырьках в аппарат гольджи. Затем от транс-полюса аппарта гольджи отпочковываются пузырьки Гольджи – первичные лизосомы. ФУНКЦИИ: (1) гетерофагический цикл лизосом. Лизосомы обеспечивают внутриклеточное пищеварение, сливаясь с фагосомой (фагоцитозной вакуолью) и переваривая её содержимое. Процесс переваривания лизосомами внеклеточных веществ, захваченных в процессе фагоцитоза, называется гетерофагией, Она служит основным способом пищеварения у большинства простейших одноклеточных организмов, У многоклеточных гетерофагия сохраняет свое значение у специализированных клеток - лейкоцитов и тканевых микрофагов, которые выполняют защитную функцию, поглощая и лизируя чужеродные и ставшие ненужными для организма собственные структуры. Этапы гетерофагического цикла лизосом:1) Контакт субстрата с поверхностным аппаратом клетки 2)Путем эн-доцитоза (фагоцитоза или пиноцитоза) субстрат (пищевая частица) поступает в клетку. Образуется фагоцитозная вакуоль (фагосома. или гетерофагосома). 3) Фагосома погружается в гиалоплазму. 4) Фагосома сливается с первичной лизосомой. содержащей неактивные ферменты. Слияние с фагосомой активизирует протонные насосы, которые обеспечивают активный транспорт протонов через лизосомальную мембрану в матрикс лизосомы. В результате в лизосоме образ кислая среда. В кислой среде ферменты активируются. 5) Под действием гидролитич ферментов субстрат переваривается т.е полимеры расщипл до мономеров. Мономеры через мембрану лизосом поступают в цитоплазму, где участв в процессах ассимиляции и диссимиляции. 6) После переваривания остаётся третичный лизосома (постлизосома), в ней содержатся непереваренные остатки пищи и ферментов. 7) Постлизосомы заверш гетерофагический цикл по разному: -они подходят к плазмалемме и выбрас непереваренные остатки пищи путём экзоцитоза. –либо остаются в клетке в виде остаточного тельца (миелинового тельца, или тельца с липофусцином – пигментом старения) (2) Аутофагический цикл. лизосомы обеспечивают разрушение ненужных клетке структур. аутофагич цикл – обеспечивает морфологическую перестройку клетки. Вновь создаваемые компоненты строятся за счет вещества и энергии, полученных от замещаемых ими предшественников после расщепления в лизосомах до простейших соединений, которые транспортируются через лизосомную мембрану в цитозолъ и доставляются к местам сборки новых конструкций. Продукты, подлежащие распаду, транспортируются к дизо-сомам в эндонематическнх пузырьках, которые после слияния с лизосомами называются аутофагосома. При помощи аутофагии регулируется количество структур и интенсивность физиологических процессов клетки в соответствии с определенным этапом клеточного цикла. Аутофагия служит одним из механизмов осуществления биологических ритмов на клеточном уровне. (3) При голодании лизосомы разрушают часть органоидов, не убивая клетку, и обеспечивают какое-то время питательные вещества для клетки (4) лизосомы выделяют ферменты из клетки наружу, при этом происходит секреция ферментов, разрушающих внеклеточные структуры (например, ферменты выделяются остеокластами, а также при замене хряща костной тканью); (5) автолиз (глобальный лизис) - разрушение всего содержимого клетки под действием ферментов, освободившихся из лизосомы (6) лизосомы выполняют защитную функцию - ферменты-гидролазы разрушают вредные для организма вещества. (7) акросома сперматозоида это гигантская лизосома (производное аппарата Гольджи), находящаяся в головке сперматозоида. Акросома содержит фермент гиалуронидазу, который растворяет гиалуроновую кислоту, находящеюся в оболочке яйцеклетки. Утрата лизосомами какой-либо из ферментативных систем приводят к тяжёлым патологическим состояниям целого организма - наследственным болезням. Лизосомальные болезни связаны с накоплением в лизосомах полноценных, но непереваренных веществ. Например, идиотия Тея-Сакса связана с накоплением сфинголипидов. ведет к смерти в 2-4 года. 10. митохондрии. атф. Митохондрии - микроскопические двумембранные полуавтономные органоиды общего назначения, обеспечивающие клетку энергией, получаемой благодаря процессам окисления и запасаемой в виде фосфатных связей АТФ. Митохондрии также участвуют в биосинтезе стероидов, окислении жирных кислот и синтезе нуклеиновых кислот. Присутствуют во всех эукариотических клетках. В прокариотических клетках митохондрий нет, их функцию выполняют мезосомы - впячивания наружной цитоплазматической мембраны внутрь клетки. Митохондрии могут иметь эллиптическую, сферическую, палочковидную, нитевидную и др. формы, которые могут изменяться в течение определенного времени. Количество митохондрий в клетках, выполняющих различные функции, варьирует в широких пределах - от 50 и достигая в наиболее активных клетках 500-5000. Их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии (мышечные клетки). В клетках печени (гепатоцитах) их число составляет 800. а занимаемый ими объем равен примерно 20% объема цитоплазмы. Размеры митохондрий составляют от 0,2 до 1-2 мкм в диаметре и от 2 до 5-7 (10) мкм в длину. На светооптическом уровне митохондрии выявляются в цитоплазме специальными методами и имеют вид мелких зерен и нитей (что обусловило их название - от греч. mitos - нить и chondros - зерно). В цитоплазме митохондрии могут располагаться диффузно, однако обычно они сосредоточены в участках максимального потребления энергии, например, вблизи ионных насосов, сократимых элементов (миофибрилл) органелл движения (аксонем спермия, ресничек), компонентов синтетического аппарата (цистерн ЭПС). Согласно одной из гипотез, все митохондрии клетки связаны друг с другом и образуют трехмерную сеть. Митохондрия окружена двумя мембранами - наружной и внутренней, разделенных межмембранным пространством, и содержат митохондриальный матрикс, в который обращены складки внутренней мембраны - кристы.
Химический состав внутренней мембраны митохондрий сходен с мембранами прокариот (например, в ней присутствует особый липид - кардиодипин и отсутствует холестерол). Во внутренней митохондриальной мембране преобладают белки, составляющие 75%. Во внутреннюю мембрану встроены белки трех типов (а) белки электрон-транспортной цепи (дыхательной цепи) - НАД'Н-дегидрогеназа и ФАД'Н дегидрогеназа - и другие транспортные белки, (б) грибовидные тельца АТФ-синтетазы (головки которых обращены в сторону матрикса) и (в) часть ферментов цикла Кребса (сукцинатдегидрогеназа). Внутренняя митохондриальная мембрана отличается чрезвычайно низкой проницаемостью, транспорт веществ осуществляется через контактные сайты. Низкая проницаемость внутренней мембраны для мелких ионов из-за высокого содержания фосфолипида Митохондрии - полуавтономные органоиды клетки, т.к. содержат собственную ДНК, полуавтономную систему репликации, транскрипции и собственный белоксинтезируюший аппарат - полуавтономную систему трансляции (рибосомы 70S типа и т-РНК). Благодаря этому митохондрии синтезируют часть собственных белков. Митохондрии могут делиться независимо от деления клетки. Если из клетки удалить все митохондрии, то новые в ней не появятся. Согласно теории эндосимбиоза митохондрии произошли от аэробных прокариотических клеток, которые попали в клетку хозяина, но не переварились, вступили на путь глубокого симбиоза и постепенно, утратив автономность, превратились в митохондрии. Митохондрии - полуавтономные органоиды, что выражается следующими признаками: 1) наличие собственного генетического материала (нити ДНК), что позволяет осуществлять синтез белка, а также позволяет самостоятельно делиться независимо от клетки; 2) наличие двойной мембраны; 3) пластиды и митохондрии способны синтезировать АТФ (для хлоропластов источник энергии - свет, в митохондриях АТФ образуется в результате окисления органических веществ). Функции митохондрий: 1) Энергетическая - синтез АТФ (отсюда эти органоиды и получили название «энергетических станций клетки»): При аэробном дыхание на кристах происходит окислительное фосфорилирование (образование АТФ из АДФ и неорганического фосфата за счет энергии, освободившейся при окислении органических веществ) и перенос электронов по электрон-транспортной цепи. На внутренней мембране митохондрии расположены ферменты, участвующие в клеточном дыхании; 2) участие в биосинтезе многих соединений (в митохондриях синтезируются некоторые аминокислоты, стероиды (стероидогенез), синтезируется часть собственных белков), а также накопление ионов (Са2+), гликопротеидов, белков, липидов; 3) окисление жирных кислот; 4) генетическая - синтез нуклеиновых кислот (идут процессы репликации и транскрипции). Митохондриальная ДНК обеспечивает цитоплазматическую наследственность. АТФ АТФ была открыта в 1929 году немецким химиком Ломанном. В 1935 году Владимир Энгельгардт обратил внимание на то, что мышечные сокращения невозможны без наличия АТФ. В период с 1939 под 1941 г. лауреат Нобелевской премии Фриц Липман доказал, что основным источником энергии для метаболической реакции является АТФ, и ввел в обращение термин "энергетически богатые фосфатные связи". Кардинальные изменения в изучении действия АТФ на организм произошли в середине 70-х годов, когда было обнаружено наличие специфических рецепторов на наружной поверхности клеточных мембран, чувствительных к молекуле АТФ. С тех пор интенсивно изучается триггерное (регуляторное) действие АТФ на различные функции организма Аденозинтрифосфорная кислота (АТФ, аденинтрифосфорная кислота) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. Химически АТФ представляет собой трифосфорный эфир аденозина, который является производным аденина и рибозы. Пуриновое азотистое основание — аденин — соединяется β-N-гликозидной сзязью с 5'-углеродом рибозы, к которой последовательно присоединяются три молекулы фосфорной кислоты, обозначаемые соответственно буквами: α, β и γ. АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз фосфоэфирных связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль. АТФ + H2O → AДФ + H3PO4 + энергия АТФ + H2O → AМФ + H4P2O7 + энергия Высвобождённая энергия используется в разнообразных процессах, протекающих с затратой энергии функции 1)Главная - энергетическая. АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. 2) синтез нуклеиновых кислот. 3) регуляция множества биохимических процессов. АТФ, присоединяясь к регуляторным центрам ферментов, усиливает или подавляет их активность.
пути синтеза: В организме АТФ синтезируется из АДФ, используя энергию окисляющихся веществ: АДФ + H3PO4 + энергия → AТФ + H2O. Фосфорилирование АДФ возможно двумя способами: субстратное фосфорилирование и окислительное фосфорилирование. Основная масса АТФ образуется на мембранах в митохондриях путём окислительного фосфорилирования ферментом H-зависимой АТФ-синтетазой. Субстратное фосфорилирование АДФ не требует участия мембран, оно происходит в процессе гликолиза или путём переноса фосфатной группы с других макроэргических соединений. Реакции фосфорилирования АДФ и последующего использования АТФ в качестве источника энергии образуют циклический процесс, составляющий суть энергетического обмена. В организме АТФ является одним из самых часто обновляемых веществ. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг в день), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ. 13. общая хар-ка какркасно-двиг системы клетки . биологич роль цитоскелета Цитоскелет (опорно-двигательная система, иди каркасно-двигательная система клетки). Опорно-двигательная система клетки образована тремя основными компонентами: микротрубочками, микрофиламентами и промежуточными филаментами. Функции: 1) обеспечивает поддержание формы клеток, осуществляет изменение объема и формы клетки, передвижение ее в пространстве, 2) образует опорный каркас для всех клеточных структур, обеспечивает фиксацию составных частей клетки в определенном положении и перемещение их относительно друг друга; 3) участвует в образовании других органоидов (ресничек, жгутиков, центриолей и др.) и межклеточных контактов; 4) через цитоскелет происходит взаимодействие с белками внеклеточного матрикса (фибронектином, ламинином). 14. микрофиламенты и промежуточные филаменты Микрофиломенты (от греч. micros- малый и лат. filamentum — нить) - органоиды, состоящие из двух спирально закрученных цепочек, образованных короткими молекулами белка актина, на долю которого приходится более 10% всех белков клетки. Тонкие микрофиламенты (МФ) - очень тонкие белковые нити диаметром 4-7 нм, состоящие из белка актина. В клетке актин присутствует в двух состояниях: в виде отдельных глобулярных (шаровидных) субъединиц или в виде филаментов (нитей), образованных в результате полимеризации глобулярного актина. В состав МФ могут входить также тропонин, тропомиозин и другие белки. МФ полярны - они имеют плюс-конец, который растет за счет полимеризации актина и минус-конец, где происходит деполимеризация. Функции микрофиламентов: 1) образуют пучки, служащие опорой для различных внутриклеточных структур; 2) образуют сократительные системы, обеспечивая клеточную подвижность. Формируют временные органоиды перемещения (псевдоподии, ламеллоподии). Лежат в основе мышечного сокращения (нити миозина скользят относительно нитей актина). Участвуют в обеспечении всех форм движения. Влияют на действие белков-переносчиков эндосом. 3) МФ образуют кортикальную сеть, которая близко подходит к плазмалемме и при помощи белка винкулина (с участием а-актинина и спектрина) присоединяется к белку интегрину цитоплазматической мембраны; 4) МФ образуют нити натяжения, расположенные по радиусам клетки. Нити представляют собой спирально скрученные волокна. 5) актиновые МФ принимают участие в образовании микроворсинок (рис.8). Микроворсинки находятся на апикальных поверхностях эпителиоцитов тонкой кишки. Промежуточные филоменты (скелетные фибриллы) - органоиды цитоплазмы клеток высших эукариот. Они образованы жесткими и прочными и устойчивыми в химическом отношении белковыми волокнами (нитевидными белками), перевитыми попарно или по трое между собой и объединенными боковыми сшивками в длинный тяж, похожий на канат. По своему диаметру (8-10 нм) промежуточные филаменты (ПФ) занимают промежуточное положение между микрофиламентами и микротрубочками. ПФ, по сравнению с микротрубочками и микрофила-ментами, отличаются большой стабильностью и устойчивостью к повреждающим факторам. Расположены дальше всех остальных элементов цигоскелета от плазмалеммы. Функции ПФ изучены недостаточно; установлено, однако, что они не влияют ни на движение, ни на деление клетки. Выполняют главным образом структурные функции, например, противодействуют растягивающим силам. К их основным функциям относятся: • структурная ;• обеспечение равномерного распределения сил деформации; * участие в образовании рогового вещества; • формообразующая – поддержание формы отростков нервных клеток; • удержание миофибрилл в мышечной ткани. 15. микротрубочки. кинезины и денеиды. Центриоли |