сводный.. 1 Методы расчёта показателей надёжности 1 модели прогнозирования эксплуатационной безотказности элементов производства стран СНГ 3
Скачать 179.43 Kb.
|
10.5. Влияние радиации на полупроводниковые диоды Воздействие радиации на полупроводниковый диод зависит от того, какой эффект использован в качестве основы его работы, вида материала, удельного сопротивления его, а также конструктивных особенностей диода. Германиевые диоды. При облучении нейтронами проводимость диодов (плоскостных и точечных) в обратном направлении увеличивается, в прямом – уменьшается. При потоках более 1013 нейтр/см2 выходят из строя, при - 1011 нейтр/см2 – происходит значительное изменение характеристик. При таких условиях облучения они могут работать в схемах, на работоспособность которых не сказывается существенно изменение характеристик проводимости диодов в обратном направлении. При воздействии малых доз - облучения (104 Р при мощности дозы 6*104 Р/ч) обратный ток плоскостных диодов возрастает на 10 %, на такую же величину уменьшается емкость p – n перехода, а также возникают фототоки. Через несколько дней после облучения параметры восстанавливаются до первоначального уровня. Кремниевые диоды. Под воздействием нейтронной радиации проводимость точечно – контактных диодов уменьшается в прямом и обратном направлениях; у плоскостных диодов проводимость в прямом направлении также уменьшается. Повреждение диодов обусловливается изменением характеристик проводимости в прямом направлении. Изменение характеристик тем больше, чем больше мощность потока. Доза 1012 нейтр/см2 нейтронного облучения вызывает заметное изменение характеристик диода. Диоды могут быть использованы при облучении нейтронным потоком 1013 - 1017 нейтр/см2 , если изменение характеристик в прямом направлении не влияет на работу схемы. Воздействие - облучения (мощность дозы 106 Р/ч) вызывает обратимые изменения обратного тока, составляющие 10-8 А. Характер воздействия облучения электронами и протонами на германиевые и кремниевые диоды аналогичен нейтронному. 10.6. Влияние радиации на транзисторы Воздействие быстрых нейтронов вызывает нарушение кристаллической решетки материала (основной эффект) и ионизацию (вторичный эффект). Вследствие этого изменяются параметры полупроводниковых материалов – время жизни основных носителей (), удельная проводимость (), скорость поверхностной рекомбинации дырок с электронами. Вследствие изменения вышеуказанных параметров уменьшается коэффициент усиления по току 0 (0), увеличивается обратный ток коллектора (Iк0), возрастают шумы транзистора. Изменение коэффициента усиления является необратимым, а изменения обратного тока могут быть обратимыми и необратимыми. Протоны и электроны влияют на характеристики транзисторов также как и нейтронное облучение. 10.6.1. Влияние радиации на коэффициент усиления Максимальный интегральный поток частиц Ф, который может выдерживать транзистор для заданного изменения параметра 0 , определяется из соотношения: , (10.1) где fа – граничная частота усиления по току в схеме с общей базой; 0 – коэффициент усиления по току в схеме с общим эмиттером (до начала облучения); 0об - коэффициент усиления по току в схеме с общим эмиттером (после облучения); к – постоянная, зависящая от типа транзистора (нейтр/с)/см2. Таблица 10.6. Значения коэффициента к.
Как видно из таблицы наибольшую радиационную стойкость имеют германиевые p-n-p транзисторы. Они при прочих равных условиях выдерживают поток быстрых нейтронов на 1 – 2 порядка больше, чем кремниевые. Ориентировочно для оценки радиационной стойкости можно пользоваться диаграммой.
Левые границы прямоугольников соответствуют тем значениям потоков и доз, при которых становятся заметными необратимые изменения, а правые границы – значения потоков и доз, при которых характеристики транзисторов находятся на грани пригодности (в качестве критерия годности выбрано изменение коэффициента усиления 0). Предпочтение следует отдавать германиевым p-n-p транзисторам с высоким значением fа и малым 0 для устройств, работающих в условиях ионизирующей радиации. При радиации происходит в основном изменение кратковременное Iк0. Причинами изменения являются: а) ионизация, создаваемая - лучами, изменяющая поверхностные свойства полупроводника; б) свойства материала корпуса, окружающего переход; в) разрушения в полупроводниках, обусловленные нейтронами. Ионизация, создаваемая радиацией, инжектирует избыток носителей в транзистор, вследствие чего возникают значительные шумы. Например, облучении потоком - лучей при мощности дозы 2*106 Р/ч приводит к возрастанию шумов на 2 дб. Шумы исчезают при выходе из поля излучения. 10.7. Влияние облучения на электровакуумные приборы и интегральные схемы На электровакуумные приборы излучение влияет слабо, пока не произойдет разрушение стеклянного баллона. Фотоумножители и электроннолучевые трубки повреждаются оптически, еще до полного отказа вследствие потемнения стекла колбы. В настоящее время доказано, что радиационная стойкость ИС в металлостеклянных корпусах сравнима с ЭВП. 10.8. Методы конструирования, направленные на уменьшение влияния облучения на характеристики РЭА При конструировании необходимо:
Для защиты от - лучей хорошо экранируют, защищают – свинец, уран, торий, висмут, вольфрам, золото, платина, ртуть и некоторые другие тяжелые материалы. Для защиты от нейтронов применяют экраны из смеси легких и тяжелых элементов (бетон с повышенным содержанием воды), бороль (сплав карбида бора с алюминием), литий, бериллий, железо, медь, вольфрам, висмут. |