Главная страница
Навигация по странице:

  • 1. Назначение и область применения

  • 2. Устройство синхронного двигателя с возбуждением от постоянных магнитов

  • 3. Принцип действия синхронной машины

  • 4. Особенности пуска двигателей с постоянными магнитами

  • пример реферата. Пример реферата. 1. Назначение и область применения


    Скачать 0.76 Mb.
    Название1. Назначение и область применения
    Анкорпример реферата
    Дата16.06.2022
    Размер0.76 Mb.
    Формат файлаdocx
    Имя файлаПример реферата.docx
    ТипРеферат
    #597464


    Содержание
    Введение……………………………………………………………………..…….3

    1. Назначение и область применения синхронной машины………………….4

    2. Устройство синхронной машины………………………………………..……5

    3. Принцип работы синхронной машины…………………………………..…...8

    4. Особенности пуска двигателей с постоянными магнитами…………….….11

    5. Техника безопасности (охрана труда) ………………..……………………12

    Заключение……………………………………………………………….………17

    Список используемой литературы……………………………...………………19

    Введение
    Применение постоянных магнитов в магнитных системах синхронных машин так же, как и в других типах электрических машин, обусловлено стремлением уменьшить габариты и вес машины, упростить конструкцию, увеличить к.п.д., повысить надежность в эксплуатации.

    Постоянные магниты в синхронных машинах предназначены для создания магнитного поля возбуждения, причем для этого могут применяться постоянные магниты, комбинированные с электромагнитами, по катушкам которых протекает постоянный ток. Использование комбинированного возбуждения позволяет получить требуемые регулировочные характеристики по напряжению и частоте вращения при значительно уменьшенной мощности возбуждения и объеме магнитной системы по сравнению с классическими электромагнитными системами возбуждения синхронных машин.

    В настоящее время постоянные магниты применяются при мощности синхронных машин до одного или нескольких киловольт-ампер. По мере создания с постоянных магнитов с улучшенными характеристиками, мощности машин возрастают.
    1. Назначение и область применения
    Синхронные машины, являются машинами переменного тока. Применяются в качестве двигателя и генератора.

    Синхронные двигатели применяются в основном в приводах большой мощности. Мощность их достигает нескольких десятков мегаватт. На тепловых станциях, металлургических заводах, шахтах, Холодильниках приводят в движение насосы, и другие механизмы, работающие с неизменной скоростью. Синхронные двигатели могут работать с различной реактивной мощностью. Таким образом, Эти двигатели позволяют улучшить коэффициент мощности предприятия. Однако стоимость приводов с синхронным двигателями выше, чем с асинхронными.



    Рисунок 1. Синхронная машина в разрезе

    Специальные двигатели малой мощности используют в устройствах, где строгое постоянство скорости, электрочасы, автоматические самопишущие приборы, устройства с программным управлением и др.

    На крупных подстанциях электрических систем устанавливают специальные синхронные машины, работающие в режиме холостого хода и отдающие в сеть только реактивную мощность, которая необходима для асинхронных двигателей. Эти машины называют синхронными компенсаторами.
    2. Устройство синхронного двигателя с возбуждением от постоянных магнитов
    Изобретение относится к области использования трехфазных синхронных машин для выработки электроэнергии. Устройство состоит из расположенных на одном валу трехфазного синхронного двигателя и трехфазного синхронного генератора, которые выполнены с возбуждением от постоянных магнитов. Ротор и статор двигателя и генератора имеют явно выраженные полюса. Обмотки статора намотаны вокруг полюсов статора. Постоянные магниты возбуждения в двигателе и генераторе размещены в спинках ротора между его полюсами. В центре полюсов ротора генератора находятся плоские компенсационные постоянные магниты, размещенные в плоскостях, проходящих через ось генератора.



    Рисунок 2. Схема устройства статора и ротора

    На рисунке 2 приняты следующие обозначения:

    • 1 - “спинка” статора (СС)

    • 2 - полюса статора (ПС)

    • 3 - обмотки статора (ОС)

    • 4 - полюса ротора (ПР)

    • 5 - “спинка” ротора (СР)

    • 6 - постоянные магниты возбуждения (ПМВ)

    Описание изобретения:

    Изобретение связано с использованием трехфазных синхронных машин специальной конструкции с возбуждением от постоянных магнитов, НО 2 К 21/27.В настоящее время широко известны конструкции трехфазных синхронных машин (двигателей и генераторов), в том числе и с возбуждением от постоянных магнитов. Описание конструкции синхронных машин с возбуждением от постоянных магнитов могут быть приняты за прототип синхронных машин, предлагаемых в настоящем изобретении. Недостатком существующих синхронных машин является то, что магнитный поток, создаваемый постоянными магнитами полюсов ротора, пересекает проводники обмотки статора, располагаемые в пазах внутренней поверхности статора. При этом генерируемая электрическая мощность в генераторе равна требуемой механической мощности, подводимой к ротору генератора (без учета потерь энергии в статоре и механических потерь энергии в роторе). Точно также механическая мощность, развиваемая двигателем, равна мощности, потребляемой двигателем от источника питания (без учета потерь энергии). В связи с изложенным эффективность существующих синхронных машин, принятых за прототипы, всегда меньше единицы.

    Технический результат, на достижение которого направлено настоящее изобретение, состоит в создании трехфазных электрических машин (двигателя и генератора) с эффективностью, большей единицы, объединяемых на одном валу в агрегат, позволяющий обеспечить выработку электроэнергии без затрат каких-либо энергоносителей. Устройство синхронного двигателя-генератора (СДГ) состоит из трехфазного синхронного двигателя (ТСД) и трехфазного синхронного генератора (ТСГ), находящихся на одном валу, помещенных в общий корпус. Двигатель и генератор выполнены с явно выраженными полюсами статора и ротора, с обмотками статора (ОС), намотанными “вокруг” полюсов статора. Статор, состоящий из полюсов статора (ПС) и “спинки” статора (СС), выполнен из листовой электротехнической стали.

    Ротор, состоящий из полюсов ротора (ПР) и спинки ротора (СР), выполнен из монолитной электротехнической стали. В спинке ротора размещены постоянные магниты возбуждения (ПМВ).В центре полюсов ротора генератора дополнительно размещены плоские небольшой толщины компенсационные постоянные магниты (ПМК), располагаемые в плоскости, содержащей ось генератора.

    Особенностью конструкции двигателей ТСД является малая толщина постоянных магнитов возбуждения (2hПМП).Длина полюсов статора вдоль внутренней поверхности статора (lПС) составляет 60 “электрических” градусов; длина полюсов ротора вдоль наружной поверхности ротора (lПР ) составляет 120 “электрических” градусов. Число полюсов статора (mC) кратно трем и равно mC=3Р, где Р - число пар полюсов в машине. Число полюсов ротора (m P) равно: mP=2P.Все части магнитопроводов двигателя и генератора являются “ненасыщенными”, что позволяет учитывать магнитное сопротивление только постоянных магнитов и воздушных зазоров. Схематические поперечные сечения ТСД и ТСГ приведены на фиг.1

    Таблица 1. Номинальные частоты вращения синхронных машин

    Номинальная частота вращения, об/мин

    Синхронные двигатели (Д) и генераторы (Г) частоты, Гц

    50

    100

    200

    400

    1000

    Д

    Г

    Д

    Г

    Д

    Г

    Д

    Г

    Д

    Г

    100
    125
    150
    166,6
    187,5
    214,3
    250
    300
    375
    428,6
    500
    600
    750
    1 000
    1 500
    3 000
    4 000
    6 000
    8 000
    10 000
    12 000
    15 000

    X
    X
    X
    X
    X
    -
    X
    X
    X
    -
    X
    X
    X
    X
    X
    X
    -
    -
    -
    -
    -
    -

    -
    X
    X
    -
    X
    X
    X
    X
    X
    X
    X
    X
    X
    X
    X
    X
    -
    -
    -
    -
    -
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    Х
    -
    Х
    -
    -
    -
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    Х
    Х
    Х
    -
    Х
    -
    -
    -
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    (Х)
    Х
    -
    -
    Х
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    Х
    Х
    -
    Х
    Х
    -
    Х
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    (Х)
    (Х)
    (Х)
    Х
    Х
    -
    Х
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    Х
    Х
    -
    Х
    -
    Х
    Х
    Х

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    (Х)
    (Х)
    Х
    -
    -
    Х
    -

    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    -
    Х
    Х
    -
    -
    -
    -
    -
    -


    3. Принцип действия синхронной машины

    синхронный двигатель магнит

    Принцип действия синхронных машин основан на взаимодействии магнитных полей статора и ротора. Схематически вращающееся магнитное поле статора можно изобразить полюсами магнитов вращающихся в пространстве со скоростью вращения магнитного поля статора (рис. 1). Поле ротора также можно изобразить в виде постоянного магнита, вращающегося синхронно с полем статора.

    При отсутствии внешнего вращающего момента, приложенного к валу машины, оси полей статора и ротора совпадают (рис. 1 а)). Силы притяжения F действуют на ротор вдоль оси полюсов и взаимно компенсируют друг друга. Угол между осями полей статора и ротора равен нулю.

    Если на вал машины действует тормозной момент, то ротор смещается в сторону запаздывания на угол (рис. 1 б). В результате силы притяжения F раскладываются на составляющие, направленные вдоль оси полюсов ротора (осевая составляющая) и перпендикулярно оси полюсов (тангенциальная составляющая). Осевые составляющие взаимно компенсируются, а тангенциальные создают вращающий момент , компенсирующий внешний момент, приложенный к валу (D - диаметр точек приложения тангенциальных сил). Машина при этом работает в режиме двигателя, компенсируя расходуемую на валу механическую мощность потреблением активной мощности из сети, питающей статор.

    В случае если к ротору прикладывается внешний момент, создающий ускорение, т.е. действующий в направлении вращения вала, картина взаимодействия полей меняется на обратную. Направление углового смещения изменяется на противоположное, соответственно изменяется направление тангенциальных сил и направление действия электромагнитного момента. В этом случае он становится тормозным, а машина работает генератором, преобразующим подводимую в валу машины механическую энергию, в электрическую энергию, отдаваемую в сеть, питающую статор.

    Вращающий момент в синхронной машине может возникать и при отсутствии собственного магнитного поля у ротора. Пусть, например, обмотка возбуждения явнополюсного ротора отключена от питания. Тогда картина магнитного поля машины будет иметь вид, представленный на рисунке 2. Здесь явнополюсный ротор связан с системой координат d-q таким образом, что ось d-d совмещена с осью симметрии в направлении максимальной магнитной проводимости, а ось q-q с направлением минимальной магнитной проводимости. Ось d-d совпадает также с осью магнитного поля возбужденного ротора и называется продольной осью, а ось q-q соответственно – поперечной.

    При отсутствии внешнего момента явнополюсный ротор займет положение, при котором продольная ось будет совпадать с осью полюсов магнитного поля статора. Это положение соответствует минимальному магнитному сопротивлению для магнитного потока статора.

    Если на вал машины будет действовать тормозной момент, то ротор отклонится на угол. При этом магнитное поле статора деформируется, т.к. магнитный поток будет стремиться замкнуться по пути наименьшего сопротивления. Магнитный поток определяется через магнитные силовые линии, т.е. линии, направление которых в каждой точке соответствует направлению действия силы, поэтому деформация поля приведет, также как и в случае возбужденного ротора, к появлению результирующей тангенциальной силы . Отличие от возбужденного ротора будет состоять в том, что тангенциальная сила будет функцией двойного угла . Это отличие возникает вследствие того, что у возбужденного ротора возможно только одно положение устойчивого равновесия при , а невозбужденный ротор может находиться в равновесии при .

    Вращающий момент, возникающий в машине с невозбужденным ротором за счет тангенциальных сил называется реактивным моментом и его зависимость от выражается функцией.

    Очевидно, что необходимым условием возникновения реактивного момента является магнитная асимметрия ротора.

    Рассмотренные выше процессы в синхронной машине наглядно демонстрируют принцип обратимости электрических машин, т.е. способность любой электрической машины изменять направление преобразования энергии на противоположное. В синхронных машинах для перехода от режима работы двигателем в режим генератора достаточно изменить направление (знак) момента нагрузки на валу.

    4. Особенности пуска двигателей с постоянными магнитами
    Подавляющее большинство синхронных двигателей пускается как асинхронные, для чего они снабжаются пусковой обмоткой. Однако в отличие от двигателей с электромагнитным возбуждением постоянные магниты на время пуска невозможно "отключить". Поэтому в процессе разгона поток постоянных магнитов индуцирует в обмотке статора ЭДС, под действием которой по обмотке через источник протекает ток (рис. 3.4). Этот ток, взаимодействуя с полем постоянного магнита, создает момент по своей природе аналогичный асинхронному моменту, развиваемому пусковой обмоткой. Однако этот момент является не движущим, а тормозящим.

    Проектирование синхронных машин, как, впрочем, и любой другой электрической машины, начинаем с выбора главных размеров. Для этого сначала необходимо определить номинальные параметры.

    1. Номинальное фазное напряжение (предполагаем, что обмотка статора будет соединена в звезду):

    (1)

    2. Номинальная полная мощность:

    (2)

    где Pн – номинальная активная мощность, Вт;

    cosφн = 0.9 – коэффициент мощности;

    ηн – КПД синхронного двигателя. По таблице 10.3 [1] принимаем согласно номинальным данным машины ηн=0.952.

    3. Номинальный фазный ток:

    (3)

    4. Число пар полюсов:

    (4)

    5. Расчётная мощность:

    (5)

    где kE – коэффициент, представляющий собой отношение ЭДС в якоре при номинальной нагрузке к номинальной нагрузке. При работе синхронного двигателя с опережающим током и cosφ=0.9, можно принимать kE в пределах 1.05 – 1.06. Принимаем kE = 1.05.

    5. Техника безопасности при обслуживании электродвигателей



    Электродвигатели, пускорегулирующая аппаратура, контрольно-измерительные приборы, устройства защиты, а также все электрическое и вспомогательное оборудование к ним выбираются и устанавливаются в соответствии с требованиями ПУЭ.

    На электродвигатели и приводимые ими механизмы должны быть нанесены стрелки, указывающие направление вращения механизма и двигателя.

    При кнопочном включении и отключении оборудования и механизмов кнопки включения должны быть заглублены на 3--5 мм за габариты пусковой коробки.

    На коммутационных аппаратах (выключателях, контакторах, магнитных пускателях и т. п), пускорегулирующих устройствах, предохранителях и т. п. должны быть надписи, указывающие, к какому электродвигателю они относятся.

    Плавкие вставки предохранителей должны быть калиброваны с указанием на клейме номинального тока вставки. Клеймо ставится заводом-изготовителем или электротехнической лабораторией. Применять некалиброванные вставки запрещается.

    Защита всех элементов сети потребителей, а также технологическая блокировка узлов выполняются таким образом, чтобы обеспечивался самозапуск электродвигателей ответственных механизмов.

    Коммутационные аппараты следует располагать возможно ближе к электродвигателю в местах, удобных для обслуживания, если по условиям экономичности и расхода кабеля не требуется иное размещение.

    Синхронные электродвигатели в часы максимума нагрузки энергосистемы эксплуатируются в режиме генерации реактивной мощности при оптимальном значении опережающего коэффициента мощности. График работы крупных синхронных электродвигателей (мощностью выше 1000 кВт), работающих с опережающим коэффициентом мощности, согласовывается с энергосистемой.

    Электродвигатели, находящиеся в резерве, должны быть постоянно готовы к немедленному пуску, периодически осматриваться и опробоваться по графику, утвержденному лицом, ответственным за электрохозяйство цеха, участка, предприятия (организации).

    Для наблюдения за пуском и работой электродвигателей механизмов, регулирование технологического процесса которых ведется по значению тока, на пусковом щитке или панели устанавливается амперметр, измеряющий ток в цепи статора электродвигателя. Амперметр также устанавливается в цепи возбуждения синхронных электродвигателей. На шкале амперметра красной чертой отмечается значение допустимого тока (выше номинального тока электродвигателя на 5 %).

    Для контроля наличия напряжения на групповых щитках и сборках электродвигателей размещаются вольтметры или сигнальные лампы.

    Для обеспечения нормальной работы электродвигателей напряжение на шинах поддерживается в пределах 100 - 105 % номинального. При необходимости допускается работа электродвигателя при отклонении напряжения от -5 до +10 % номинального.

    Вибрация электродвигателей, измеренная на каждом подшипнике, осевой разбег ротора, размер воздушного зазора не должны превышать величин, указанных в Нормах.

    Постоянный надзор за нагрузкой электродвигателей и температурой подшипников, входящего и выходящего воздуха у электродвигателей с замкнутой системой вентиляции, уход за подшипниками, операции по пуску, регулированию и остановке производит персонал цеха, обслуживающий механизм.

    Электродвигатель немедленно (аварийно) отключается от сети в следующих случаях:

    • а) несчастный случай (или угроза его) с человеком;

    • б) появление дыма или огня из электродвигателя или его пускорегулирующей аппаратуры;

    • в) вибрация сверх допустимых норм, угрожающая целости электродвигателя;

    • г) поломка приводного механизма;

    • д) нагрев подшипника сверх допустимой температуры, указанной в инструкции завода-изготовителя;

    • е) значительное снижение частоты вращения, сопровождающееся быстрым нагревом электродвигателя.

    В местной инструкции могут быть указаны и другие случаи, при которых электродвигатели должны быть аварийно отключены, а также указан порядок устранения аварийного состояния и пуска электродвигателей.

    Периодичность капитальных и текущих ремонтов электродвигателей, работающих в нормальных условиях, устанавливает главный энергетик предприятия. В зависимости от местных условий, как правило, текущий ремонт и обдувка электродвигателей должны производиться одновременно с ремонтом приводных механизмов.

    Профилактические испытания и измерения на электродвигателях должны проводиться в соответствии с Нормами.

    Рассмотрим правила техники безопасности при обслуживании электродвигателей.

    При работе, не связанной с прикосновением к токоведущим частям электродвигателя или к вращающимся частям электродвигателя и приводимого им в движение механизма, необходимо остановить электродвигатель и на его пусковом устройстве или ключе управления повесить плакат «Не включать. Работают люди».

    При работе на электродвигателе напряжением выше 1000 В или приводимом им в движение механизме, связанной с прикосновением к токоведущим или вращающимся частям, с электродвигателя должно быть снято напряжение.

    При работе на электродвигателе заземление накладывается на кабеле (с отсоединением или без отсоединения его от электродвигателя) или на его присоединении в РУ.

    При работе на механизме, если она не связана с прикосновением к вращающимся частям или если рассоединена соединительная муфта, заземлять питающий кабель электропривода не требуется.

    При работе на электродвигателе напряжением до 1000 В или приводимом им в движение механизме снятие напряжения и заземление токоведущих жил кабеля должны выполняться согласно следующим пунктам:

    1) В электроустановках напряжением до 1000 В с токоведущих частей, на которых будет проводиться работа, напряжение со всех сторон должно быть снято отключением коммутационных аппаратов с ручным приводом, а при наличии в схеме предохранителей - снятием последних.

    При отсутствии в схеме предохранителей предотвращение ошибочного включения коммутационных аппаратов должно быть обеспечено такими мерами, как запирание рукояток или дверец шкафа, укрытие кнопок, установка между контактами изолирующих накладок и др. Допускается также снимать напряжение коммутационным аппаратом с дистанционным управлением при условии отсоединения концов от включающей катушки.

    Если позволяют конструктивное исполнение аппаратов и характер работы, перечисленные выше меры могут быть заменены расшиновкой или отсоединением концов кабеля, проводов от коммутационного аппарата либо оборудования, на котором должна производиться работа.

    Расшиновку или отсоединение концов кабеля, проводов может выполнять лицо с группой по электробезопасности не ниже III из ремонтного персонала под руководством допускающего. С ближайших к рабочему месту токоведущих частей, доступных для непреднамеренного прикосновения, напряжение должно быть снято либо они должны быть ограждены.

    • 2) Отключенное положение коммутационных аппаратов напряжением до 1000 В с недоступными для осмотра контактами (автоматы невыкатного типа, пакетные выключатели, рубильники в закрытом состоянии и т. п) определяется проверкой отсутствия напряжения на их зажимах либо на отходящих шинах, проводах или на зажимах оборудования, получающего питание от коммутационных аппаратов.

    • 3) В электроустановках напряжением до 1000 В при работах со снятием напряжения на сборных шинах РУ, щитов, сборок на эти шины (за исключением шин, выполненных изолированным проводом) накладывается заземление. Необходимость и возможность наложения заземления на присоединения этих РУ, щитов, сборок и на оборудование, получающее от них питание, определяет лицо, выдающее наряд, распоряжение.

    Перед допуском к работе на электродвигателях насосов, дымососов и вентиляторов, если возможно вращение электродвигателей от соседних с ними механизмов, должны быть закрыты и заперты на замок задвижки и шиберы последних, а также приняты меры по затормаживанию роторов электродвигателей.

    Ограждение вращающихся частей электродвигателей во время их работы снимать запрещается.

    Операции по отключению и включению электродвигателей напряжением выше 1000 В пусковой аппаратурой с приводами ручного управления производятся с изолирующего основания с применением диэлектрических перчаток.

    Обслуживать щеточный аппарат на работающем электродвигателе допускается единолично лицу из .оперативного персонала или выделенному для этой цели обученному лицу с группой по электробезопасности не ниже III. При этом необходимо соблюдать следующие меры предосторожности:

    • - работать в головном уборе и застегнутой спецодежде, остерегаясь захвата ее вращающимися частями машины;

    • - пользоваться диэлектрическими галошами или резиновыми ковриками;

    • - не касаться руками одновременно токоведущих частей двух полюсов или токоведущих и заземляющих частей.

    Кольца ротора допускается шлифовать на вращающемся электродвигателе лишь с помощью колодок из изоляционного материала с применением защитных очков.

    У работающего многоскоростного электродвигателя неиспользуемая обмотка и питающий ее кабель должны рассматриваться как находящиеся под напряжением.
    Заключение
    На основании материала, рассмотренного в данной работе можно сделать вывод, что почти вся электрическая энергия (на долю химических источников приходится незначительная часть) вырабатывается электрическими ма­шинами. Но электрические машины могут работать не только в генера­торном режиме, но и в двигательном, преобразуя электрическую энергию в механическую. Обладая высокими энергетическими показателями и меньшими, по сравнению с другими преобразователями энергии, расхо­дами материалов на единицу мощности, экологически чистые электроме­ханические преобразователи имеют в жизни человеческого общества ог­ромное значение.

    Синхронные двигатели применяются в электроприводах, где требуется постоянная частота вращения. Преимущество синхрон­ных двигателей перед асинхронными — воз­можность работы с опережающим cos φ или cosφ = l, а также большая перегрузочная способность. Однако синхронные двигатели имеют плохие пусковые свойства, и для питания обмотки возбуждения требуется по­стоянный ток. Синхронные двигатели приме­няются в основном как мощные двигатели на мощности свыше 600 кВт и как микро­двигатели на мощности до 1 кВт.

    Синхронные машины находят примене­ние также в качестве синхронных компенса­торов — генераторов реактивной мощности. При параллельной работе с сетью при пере­возбуждении синхронная машина выдает в сеть реактивную мощность и является ем­костью, а при недовозбуждении по отноше­нию к сети синхронная машина является индуктивностью и потребляет из сети реак­тивную мощность.

    Синхронные компенсаторы используют­ся в энергосистемах как регулируемые емко­сти или индуктивности.

    В конструктивном исполнении синхрон­ные машины делятся на явно- и неявнополюсные. Быстроходные машины выпол­няются с неявнополюсным ротором, а тихо­ходные — с явнополюсным.

    К основной проблеме в области электромеханики следует отнести создание электрических машин, использующих новые нетрадиционные источники энергии. Сейчас около 80% электроэнергии вырабатывается на тепловых электростанциях за счет сжигания органического топлива. За­пасы нефти, газа и угля ограничены, и необходимо в ближайшие годы значительно уменьшить долю органического топлива в топливном балан­се страны. Электромеханическое преобразование энергии и в будущем будет основным в энергетике, поэтому создание электрогенераторов, ис­пользующих новые источники энергии, является особой заботой специалистов в области электро­механики

    Список используемой литературы
    1. Полуянович Н. К. — Монтаж, наладка, эксплуатация и ремонт систем электроснабжения промышленных предприятий : Учебное пособие -
    5-е изд. СПб.: Лань, 2019. - 396 с. ISBN: 978-5-8114-1201-3

    2. Правила устройства электроустановок: 7-е издание (ПУЭ)/ Главгосэнергонадзор России. М.: Изд-во ЗАО «Энергосервис», 2007. 610 с.

    3. Гольдберг О.Д. Гурин Я.С. Проектирование электрических машин. - 2-е изд. перераб и доп. - М.: Высшая школа. - 2001.

    4. Иноземцев Е.К. Ремонт и эксплуатация электродвигателя с непосредственным водяным охлаждением типа ЛВ - 8000/6000 УЗ - М.: Энергия, 1980 - 546 с.

    5. Иванов И.И., Равдоник В.С. Электротехника: Учебник для вузов. - М.: Высшая школа, 1984. - 375 с.

    6. Копылов И.П., Клоков Б.К., Морозкин В.П. Проектирование электрических машин: Учебное пособие для вузов - 3-е изд. перераб. и доп. - М.: Высшая школа, 2002 - 757 с.

    7. Копылов И.П. Электрические машины: Учеб. для вузов. - 2-е изд., перераб. - М.: Высш. шк.; Логос; 2000. - 607 с.

    8. Копылов И. П., Клокова Б. К. Справочник по электрическим машинам: В 2 т./ Т. 1 и 2.-М.: Энергоатомиздат, 1988.-456 с:

    9. Linsley Trevor. Basic Electrical Installation Work. London: Elsevier Ltd., 2011. – 495 р.

    10. Научная электронная библиотека РусАрх [Электронный ресурс]. – URL: http://rusarch.ru/, свободный доступ – (12.12.2020).
    В списке литературы то, что выделено желтым обязательно нужно оставить, остальные источники добавляете свои, после прочтения удалите это предложение.


    написать администратору сайта