Главная страница
Навигация по странице:

  • Тонкостенные купола-оболочки

  • ответы деревянные консрукции. 1. Области рационального применения Деревянные конструкции


    Скачать 358.92 Kb.
    Название1. Области рационального применения Деревянные конструкции
    Анкорответы деревянные консрукции.docx
    Дата13.05.2017
    Размер358.92 Kb.
    Формат файлаdocx
    Имя файлаответы деревянные консрукции.docx
    ТипДокументы
    #7513
    страница8 из 9
    1   2   3   4   5   6   7   8   9

    47. Купола.

    Купольные покрытия являются самой распространенной формой пространственных конструкций, в том числе из древесины, фанеры, пластмасс. Будучи одним из наиболее экономичных видов оболочек на круглом или многоугольном плане, они получили широкое распространение в гражданском, промышленном и сельскохозяйственном строительстве. Очертание куполов зависит от архитектурных и технологических требований, вида материала, типизации элементов, простоты изготовления, транспортировки и монтажа конструкций. Купольные оболочки из пластмасс имеют диаметр от одного метра (световые фонари) до 50—60 и (сферы укрытия антенных устройств). При усилении пластмассовых куполов деревянными или металлическими ребрами их пролеты могут превышать Д00 м. Купола из клеефанерных элементов достигают диаметра 90 м. Известные к настоящему времени возведенные деревянные купола достигают пролета 153 и 162 м, а покрытие над стадионом, разработанное фирмой «Вайерхоэер» (г. Такома, США) в форме ребристого купола с сетчатым заполнением, из клееной древесины и фанеры, запроектировано диаметром 257 м.

    Классифицировать купола покрытия можно по самым различным признакам. По материалу — из древесины, фанеры, пластмасс и их сочетаний. По конструктивному решению — тонкостенные купола-оболочки, ребристые купола, ребристо-кольцевые, ребристо-кольцевые купола с решётчатыми связями, сетчатые. По форме поверхности, получаемой вращением образующей вокруг вертикальной оси, купола могут быть сферического очертания, эллиптического, конического, в форме гиперболоида вращения и т. д. Пластмассовые купола часто проектируют из волнистых (лотковых) и складчатых элементов.

    Основными нагрузками, действующими на купольное покрытие, являются: собственный вес конструкции, снеговой покров, технологическая нагрузка от массы оборудования и приспособлений; для подъемистых куполов — ветровая нагрузка.

    Методика расчета купольных покрытий зависит от типа оболочки и вида нагрузки — ассиметричной и несимметричной. К первой, как правило, относится собственный вес конструкции; как вариант — масса сплошного снегового покрова и симметрично подвешенного оборудования. Ко второй — ветровая нагрузка; как вариант — односторонняя снеговая и масса несимметрично расположенного оборудования.

    Оболочка купола считается пологой, если отношение стрелы подъема купола к его диаметру не превышает ,1/5. При отношении стрелы подъема купола к его диаметру не более 1/4 ветровой напор создает на поверхности купола отсос, который разгружает купол и при достаточном собственном весе покрытия может не учитываться. Однако легкие пластмассовые купола необходимо проверять расчетом на действие отсоса ветра.

    Тонкостенные купола-оболочки

    Однослойные пластмассовые купола изготовляют из полиметилметакрилата (органическое стекло), полиэфирного стеклопластика (чаще всего светопрозрачного) и пенопласта (пенополистирол и др.). Трехслойные купола-оболочки общей толщиной от 15 до 50 мм имеют стеклопластиковые обшивки толщиной до 3 мм и средний слой из пенополистирола, пенополиуретана, пенополивинилхлорида, пенофенопласта, сотопласта и просто воздушной прослойки. Двухслойные оболочки состоят из наружного стеклопластикового слоя и внутреннего пенопластового.

    Диаметр и толщина однослойных куполов из полиметилметакрилата соответственно достигают 10 м и 20 мм; из стеклопластика—9 м и 6 мм; из пенопласта—24 м и 200 мм. Трехслойные купола возводят диаметром до 25 м с общей толщиной оболочки до 50 мм.

    Параметры двухслойных куполов аналогичны однослойным стеклопластиковым, так как внутренний пенопластовый слой в основном выполняет функцию утепли^-теля.

    Интересным примером трехслойного пластмассового купола является покрытие выставочного павильона в г. Бергамо (Италия) (рис. IX.25). Диаметр купола 25 м, высота подъема 9 м, общая толщина оболочки 50 мм, обшивка из стеклопластика толщиной 3 мм, средний слой — пенопласт. Купол собран на болтах из 24 однотипных сегментов с размером понизу около 3,3 м, имеющих круглые проемы диаметром 1 м, заполненные акриловыми фонарями. Сегменты опираются на полое железобетонное кольцо с размещенным на нем техническим оборудованием. С двух сторон по диаметру купола устроены крупногабаритные проемы для въезда грузовых автомобилей. При необходимости можно стыковать несколько куполов по выступам входного обрамления проемов, получив тем самым многокупольное помещение. Масса покрытия на 1 м2 перекрываемой площади 20 кг. Деревянные тонкостенные купола-оболочки проектируют диаметром 12—35 м; они, как правило, имеют сферическое очертание. Купол состоит (рис. IX.26) из меридианных ребер (арочек), верхнего и нижнего опорных колец, кольцевого и косого настилов.

    Меридианные ребра воспринимают сжимающие усилия в оболочке по направлению меридиана и передают их на верхние и нижние опорные кольца. Ребра состоят из нескольких слоев склеенных или сбитых гвоздями досок, общей высотой поперечного сечения не менее 1/250 диаметра купола, которую принимают из условия его жесткости. Шаг ребер по нижнему опорному кольцу назначают 0,8—1,5 м. Верхние концы ребер присоединяют шарнирно к верхнему сжатому кольцу. Ребра передают на кольцо продольную и поперечную силу. Соединения осуществляют металлическими накладками, присоединяемыми кровельными болтами.

    48. Кружально-сетчатые своды

    Общие сведения. Кружально-сетчатые своды представляют собой пространственную конструкцию, которая состоит из. отдельных, поставленных на ребро стандартных элементов—косяков, идущих по двум пересекающимся направлениям и образующих ломаные винтовые линии.

    В кружально-сетчатых конструкциях выгодно сочетаются индустриальность изготовления элементов с преимуществами пространственных конструкций. Прочность и надежность свода определяются средней прочность многих элементов, и влияние качества древесины отдельных элементов имеет меньшее значение, чем в плоскостных конструкциях.

    Построенные в нашей стране свыше 50 лет назад деревянные кружально-сетчатые своды и купола продолжают эксплуатироваться и находятся в хорошем состоянии. Длительная эксплуатация таких конструкций/ за рубежом также свидетельствует об их надежности и долговечности находит широкое применение, а их пролеты становятся все более значительными. Так, в 1964 г. в г. Спрингфилде (США) построен сетчатый свод над бассейном с пролетом 52 м, выполненный из клееных косяков.

    Кружально-сетчатые своды в поперечном сечении имеют снаружи, круговое или правильное многоугольное очертание. В первом случае верхняя грань, косяков имеет близкое к круговому эллиптическое очертание, а во втором — ломаное. Распор покрытий воспринимается либо металлическими затяжками, либо непосредственно опорами.

    Характерными особенностями всех кружально-сетчатых покрытий являются:

    1) унификация формы и размеров косяков, дающая возможность заготовлять их заводским способом, что полностью отвечает современным требованиям индустриализации и стандартизации строительства;

    1. транспортабельность элементов при их перевозке;

    2. простота и быстрота сборки конструкции;

    3. возможность и необходимость устройства кровельного настила непосредственно по несущей конструкции (без прогонов и вспомогательных стропильных ног).

    В зависимости от способа узлового соединения косяков различают два конструктивных варианта кружально-сетчатых сводов: 1) с узлами на шипах; 2) с металлическими связями в узлах. Оба варианта можно выполнять либо из косяков цельного сечения, которое ограничено размерами сортамента пиломатериалов, позволяющего применять своды с предельным пролетом не более 20 м, либо из клеефанерных косяков, которые дают возможность перекрывать значительно большие пролеты (до 100 м).

    В конструкции покрытий всех систем различают три типа узлов: основные (средние); опорные, в которых косяки соединяются с настенными брусьями,

    и торцовые, в которых косяки соединяются с торцовой аркой. Основные узлы сетки образуются из трех косяков, один из которых является сквозным и проходит через узел, не прерываясь, а два других набегающих косяка примыкают к сквозному косяку.

    Конструкция кружально-сетчатых сводов (системы С И. Песельника) с узлами на шипах. Своды этой системы изготовляют из косяков цельного сенения, имеющих на концах шипы, а посередине сквозное гнездо. В каждом узле сетки сопрягаются три косяка, из которых два набегающих косяка входят с обеих сторон своими шипами в гнездо сквозного косяка. В кружально-сетчатом своде с узлами на шипах применяют сетку как прямоугольную, так и косоугольную с углом φ=45°.

    Верхняя кромка косяка может быть криволинейного (эллиптического или приближающего к круговому) очертания либо с двумя или одним переломом по очертанию описанного или вписанного в окружность правильного многоугольника. Косяк с двумя переломами имеет большую жесткость, меньшую длину пропила и дает меньше отходов при изготовлении, чем косяк с одним переломом.

    Оси сквозного гнезда для шипов располагаются соответственно посередине длины и высоты косяка. Форма гнезда прямоугольная. Высоту гнезда, а следовательно, и шипа обычно принимают 1/4 высоты косяка (hK). Для удобства монтажа свода, который ведут от опор к шалыге, рекомендуется решать узел так, чтобы шип вышележащего набегающего косяка располагался в гнезде над шипом нижележащего косяка. Такое решение вызывается также необходимостью обеспечить в гнезде взаимный упор набегающих косяков для восприятия одной из действующих в узле сил, направленной нормально к их оси.

    Косяки в своде помимо продольной силы сжатия н изгибающего момента воспринимают поперечные силы, которые передаются таким образом, что вызывают опасность раскалывания косяков. Чем больше длина косяка, тем меньше поперечная сила, вызывающая эту опасность. Рекомендуется принимать lK/hKl3. Толщина косяка b должна быть не менее 2,5см, а hK/bK≤4,5.

    Концы косяков прямоугольной сетки свода имеют более простую форму, а потому проще в изготовлении.

    49. Пневматически строительные конструкции покрытий

    Пневматические строительные конструкции покрытий по характеру работы очень близки к пространственным висячим и тентовым мембранам. Оболочки этих конструкций, изготовленные из тканых материалов, способны стабилизировать свою форму только при наличии предварительного напряжения. В отличие от тентовых мембран, где предварительное напряжение создается механическим путем, пневматические конструкции реализуют предварительное напряжение вследствие разности давления (избыточного или вакуума) в подоболочечном и окружающем конструкцию пространстве. -- Возникнув в конце сороковых годов нашего столетия благодаря успехам химии полимеров, пневматические конструкции сразу вступили в полосу своего бурного развития, подготовленную высоким уровнем техники и технической культуры производства.

    Среди преимуществ пневматических конструкций следует отметить малый собственный вес, высокую мобильность, быстроту и простоту возведения, возможность перекрытия больших пролетов, высокую степень заводской готовности и др. Пневматические строительные конструкции в зависимости от характера работы обычно разделяются на две самостоятельные группы — пневмокаркасные (надувные) и воздухоопорные. Пневмокаркасные конструкции — это надувные стержни или панели, несущая способность которых (сопротивление сжатию, изгибу, кручению) обеспечивается повышенным давлением воздуха в замкнутом объеме элемента. Большое внутреннее давление воздуха (до 150 кПа) требует высокой степени герметичности и прочности материала. Это же условие ограничивает пролет конструкций, который с учетом экономической целесообразности для рядовых сооружений не превышает 15—16 м. Стоимость пневмокаркасных конструкций в 3—5 раза выше, чем воздухоопорных. Эти недостатки сдерживают их применение и серийный выпуск конструкций до сих пор в мире не налажен. Основным достоинством пневмокаркасных конструкций является отсутствие избыточного давления воздуха в эксплуатируемом пространстве и, как следствие этого, потребности в процессе шлюзования. Пример неординарных пневмокаркасных конструкций — павильон Фудзи (рис IX.48) и покрытие пневматического плавучего театра на ЭКСПО-70 в г. Осаке.

    Павильон Фудзи сострит из 16 пневмоарок диаметром 4 и длиной 78 м, расположенных по окружности диаметром 50 м. В обоих торцах оставлены проемы шириной 10 м. Тканевая основа материала с разрывной прочностью 400 кН/м и массой 3,5 кг/м2 состоит из поливинилспиртового волокна. Наружная сторона ткани покрыта хайпалоном, внутренняя — поливинилхлоридом. Обычное давление в арках 10 кПа. Оно может быть повышено до 25 кПа при штормовых ветрах. Обычно диаметр пневмокаркасных элементов не превышает 1 м. Увеличение диаметра арок в павильоне Фудзи позволило снизить внутреннее давление в них и величину растягивающих усилий.

    Оболочка покрытия театра поддерживается пневматическими трубчатыми элементами диаметром 3 м, образующими три арки пролетом 23 м. Внутренняя оболочка потолка была выполнена в виде мембраны с канатами. Обе оболочки — кровельная и потолочная герметично прикреплялись по периферии аудитории к основанию и пространство между оболочками находилось под отрицательным давлением (вакуумом) 0,1 кПа. При штормах для предотвращения флаттера оболочки давление повышалось до 0,2 кПа. В этом сооружении сочетаются конструкции двух типов — пнев-мокаркасные и воздухоопорные.

    Воздухоопорные конструкции представляют собой оболочки, стабилизированные в проектном положении незначительной разницей давления в разделяемых оболочкой пространствах. Это конструкции, которые опираются на воздух. Для противодействия внешним нагрузкам давление воздуха под оболочкой по сравнению с атмосферным повышается в пределах 10—40 кПа. Такое незначительное избыточное давление не осложняет требований к герметичности и к самочувствию находящихся под оболочкой людей.

    Воздухоопорные сооружения получили в строительстве большце распространение. Покрытия этого типа отличаются простотой конструкции, безопасностью и надежностью в эксплуатации, низкой стоимостью, способностью перекрывать большие пролеты. Около 50—70 % возве-1 денных в настоящее время воздухоопорных покрытий используются как складские помещения; 20—40% — как покрытия для спортивных сооружений. Часть конструкций используют как выставочные павильоны, покрытия строительно-монтажных площадок, различного рода укрытия.

    Наибольшее распространение получили оболочки в форме цилиндрических сводов и сферических куполов. Поскольку оболочка «лежит» на воздушной подушке, пролеты воздухоопорных конструкций теоретически не имеют ограничений. Практически пролет оболочек без усиления канатами или тросовыми сетками достигает 50—70 м. Пролеты оболочек, усиленные тросами, достигают 168 м, что не является предельным. Например, проект покрытия города на 20 тыс. жителей, разработанный под руководством Ф. Отто (ФРГ) в форме купола, имеет диаметр 2 км, высоту 240 м, диаметр несущих канатов из полиэфирного волокна 270 мм. Гарантированный срок службы покрытия 100 лет. Давление под оболочкой всего 250 Па.

    В нашей стране приняты следующие размеры воздухоопорных оболочек: сферические купола диаметром 12, 24, 36, 42, 60 м; цилиндрические оболочки пролетом 12, 18, 24, 30, 36, 42, 48, 60 м; длина цилиндрических оболочек в зависимости от пролета изменяется от 24 до 90 м, высота от 6 до 20 м.

    Любая классификация таких конструкций условна. Поэтому двухслойные покрытия, называемые пневмолин-зами (на круглом, овальном или многоугольном плане) и пневмоподушками (на прямоугольном плане), занимают промежуточное положение между первой и второй группами. По принципу статической работы их следует относить к воздухоопорным конструкциям, хотя по отсутствию избыточного давления в эксплуатируемом пространстве они близки к воздухонесомым. v Другие виды конструкций, такие, как пневмооболоч-ка на жестком каркасе или пневмооболочка, поддерживаемая вантами и т. п., принципиально по характеру работы не отличаются от рассмотренных и благодаря Дополнительным устройствам являются модификацией внутри группы.

    Основными частями воздухоопорной пневматической "конструкции являются собственно оболочка, шлюз, контурные элементы с анкерными устройствами, воздуходувные и отопительные установки. Основу несущей конструкции шлюза обычно составляет жесткий каркас из металла, дерева, пластмассы, по которому закрепляют герметизирующую оболочку покрытия. Размеры шлюза зависят от назначения сооружения и колеблются от 1Х2Х Х2 м для запасных входов до размеров, обеспечивающих шлюзование реактивных самолетов.

    Очень ответственной частью оболочки является анкерное устройство. Из большого числа вариантов анкерных устройств заслуживает внимания конструкция крепления оболочки к фундаменту или к отдельным сваям с помощью двух труб — верхней и нижней. Нижнюю трубу крепят к фундаменту, а верхнюю — к полотнищу оболочки. Затем трубы соединяются скобами. Эффективно анкерное крепление оболочки с применением каната (рис. IX.50,а). В сельском строительстве получили распространение схемы креплений с применением вантовых анкеров, земляных анкеров, рукавов, заполненных водой (рис.,1Х.50,б).

    Первоначальная стоимость пневматических сооружений ниже стоимости сооружения из традиционных материалов, однако эксплуатационные расходы на содержание пневматических конструкций выше. Поэтому, оценивая экономическую эффективность пневматических конструкций, необходимо принимать во внимание, что со временем наступает момент, когда суммарные расходы на приобретение и эксплуатацию пневматических конструкций будут превышать таковые для конструкций из других материалов. По данным ЧССР воздухоопорная оболочка размером 21X57 м после 15 лет эксплуатации , по суммарным расходам уравнивается со зданием размером 21X60 м из стальных рам и гофрированной стали.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта