Рамка Пояснительной записки 1. 1 общая часть
Скачать 363.5 Kb.
|
ВВЕДЕНИЕ Основное назначение вакуумной перегонки мазутов: получение широкой фракции 350 - 550 С ( и выше) - сырья для каталитических процессов и дистиллятов для производства масел и парафинов. В отношении требований к качеству сырья эти две задачи различаются по четкости ректификации, но общим условием является максимальный отбор дистиллятов при минимуме потерь их с остатком. Эти требования влияют на технологические и конструктивные решения, а также аппаратурное оформление вакуумной перегонки мазута. В процессах вакуумной перегонки мазута по топливному варианту преимущественно используют схему однократного испарения, применяя одну сложную ректификационную колонну с выводом дистиллятных фракций через отпарные колонны или без них. При использовании отпарных колонн по высоте основной вакуумной колонны организуют несколько циркуляционных орошений. Для вакуумной перегонки мазута используется вакуумная установка топливного профиля. Основное назначение устройства - получение тяжелого и легкого газойля с широким фракционным составом, а так же гудрона и затемненной фракции. Цель данной курсовой работы изучить процесс перегонка мазута под вакуумом установки производства нефтяных битумов, выполнить технологический растёт вакуумной колоны, рассмотреть вопросы безопасной эксплуатации колонного оборудования. 1 ОБЩАЯ ЧАСТЬ 1.1 Литературный обзор Процессами массообменная называют такие процессы, в которых основную роль играет перенос вещества из одной фазы в другую. Движущей силой этих процессов является разность химических потенциалов. Как и в любых других процессах, движущая сила массообменная характеризует степень отклонения системы от состояния динамического равновесия. В пределах данной фазы вещество переносится от точки с большей к точке с меньшей концентрацией. Поэтому обычно в инженерных расчетах приближенно движущую силу выражают через разность концентраций, что значительно упрощает расчеты массообменных процессов. Массообменные процессы широко используются в промышленности для решения задач разделения жидких и газовых гомогенных смесей, их концентрирования, а также для защиты окружающей природной среды (прежде всего для очистки сточных вод и отходящих газов). Например, практически в каждом химическом производстве взаимодействие обрабатываемых веществ осуществляется в реакторе, в котором обычно происходит только частичное превращение этих веществ в продукты реакции. Поэтому выходящую из реактора смесь продуктов реакции и непрореагировавшего сырья необходимо подвергнуть разделению, для чего эту смесь направляют в массообменную аппаратуру, из которой непрореагировавшее сырье возвращается в реактор, а продукты реакции направляются на дальнейшую переработку или использование. Наибольшее распространение получили рассмотренные ниже массообменные процессы. 1. Перегонка и Ректификация - разделение жидких гомогенных смесей на компоненты при взаимодействии потоков жидкости и пара, полученного испарением разделяемой смеси. Этот процесс представляет собой Переход компонентов из жидкой фазы в паровую и из паровой в жидкую. Процесс ректификации используется для разделения жидких смесей на составляющие их компоненты, получения сверхчистых жидкостей и для других целей. 2. Абсорбция - избирательное поглощение газов или паров жидким поглотителем. Этот процесс представляет собой переход вещества из газовой (или паровой) фазы в жидкую. Наиболее широко используется для разделения технологических газов и очистки газовых выбросов. Процесс, обратный абсорбции, т. е. выделение растворенного газа из жидкости, называют Десорбцией.. 3. Экстракция (жидкостная)- извлечение растворенного в одной жидкости вещества другой жидкостью, практически не смешивающейся или частично смешивающейся с первой. Этот процесс представляет собой Переход извлекаемого вещества из одной жидкой. Процесс применяют для извлечения растворенного вещества или группы веществ сравнительно невысоких концентраций. 4. Адсорбция- избирательное поглощение газов, паров или растворенных в жидкости веществ твердым поглотителем, способным поглощать одно или несколько веществ из смеси. Этот процесс представляет собой Переход веществ из газовой, паровой или жидкой 1шзы в твердую. Адсорбцию применяют для извлечения того или иного вещества (или веществ) достаточно низкой концентрации из six смеси. Процесс, обратный адсорбции, т. е. выделение сорби-рованного вещества из твердого поглотителя, называют Десорбцией. 5. Ионный обмен- избирательное извлечение ионов из растворов электролитов. Этот процесс представляет собой Переход извлекаемого вещества из жидкой фазы в твердую. Процесс применяют для извлечения веществ из растворов, в которых эти вещества находятся при низких концентрациях. 6. Сушка - удаление влаги из твердых влажных материалов, ц основном путем ее испарения. Этот процесс представляет собой Переход влаги из твердого влажного материала в газовую или паровую фазы. Сушку широко применяют в технике для предварительного обезвоживания перерабатываемых веществ или обезвоживания готового продукта. 7. Растворение и экстрагирование из твердых тел-это процессы перехода твердой фазы в жидкую (растворитель). Извлечение на основе избирательной растворимости какого-либо вещества (или веществ) из твердого пористого материала называют Экстракцией из твердого материала, или выщелачиванием. Применяют ее для извлечения ценных или токсичных компонентов из твердых материалов. 8. Кристаллизация-выделение твердой фазы в виде кристаллов из растворов или расплавов. Этот процесс представляет собой Переход вещества из жидкой фазы в твердую. Применяется, в частности, для получения веществ повышенной чистоты. 9. Мембранные процессы - избирательное извлечение компонен- ов смеси или их концентрирование с помощью полупроницаемой перегородки-мембраны. Эти процессы представляют собой Переод вещества (или веществ) из одной фазы в другую через разделяющую их мембрану. Применяются для разделения газовых и жидких смесей, очистки сточных вод и газовых выбросов. Таким образом, во всех перечисленных выше процессах общим является переход вещества (или веществ) из одной фазы в другую. Процесс перехода вещества (или нескольких веществ) из одной фазы ^ другую в направлении достижения равновесия называют массопе-редачей. В отличие от теплопередачи, которая происходит обычно через стенку, массопередача осуществляется, как правило, при непосредственном соприкосновении фаз (за исключением мембранных процессов). При этом граница соприкосновения т. е. поверхность контакта фаз-может быть подвижной (система газ-жидкость, пар-жидкость, жидкость-жидкость) или неподвижной (газ-твердое тело, пар-твердое тело, жидкость-твердое тело). Перенос вещества внутри фазы - из фазы к границе раздела фаз или наоборот - от границы раздела в фазу - называют массоотдачей (по аналогии с процессом переноса теплоты внутри фазы-теплоотдачей). Процессы массопередачи обычно обратимы. Причем направление перехода вещества определяется концентрациями вещества в фазах и условиями равновесия. Процесс перехода вещества из одной фазы в другую в изолированной замкнутой системе, состоящей из двух или большего числа фаз, возникает самопроизвольно и протекает до тех пор, пока между фазами при данных условиях температуры и давления не установится подвижное фазовое равновесие. При этом в единицу времени из первой фазы во вторую переходит столько же молекул, сколько в первую из второй. Если теперь количество распределяемого вещества увеличить (например, в фазе Фу) на П молекул, то распределяемое вещество будет переходить из фазы Фу в фазу Ф^. Причем скорость перехода будет определяться не общим числом молекул (тА-п) вещества М, находящегося в фазе Фу, а числом молекул, избыточным по отношению к равновесному (т). Так как концентрация пропорциональна числу молекул, то скорость перехода распределяемого вещества из одной фазы в другую пропорциональна разности между фактической (или рабочей) концентрацией распределяемого вещества в данной фазе (т+п) и равновесной (w). А это означает, что чем больше такая разница, тем больше (при всех прочих равных условиях) перейдет вещества М из одной фазы в другую. Если эта разница отрицательна, то вещество М переходит из фазы Ф^ в фазу Фу (т. е. процесс пойдет в обратном направлении). Таким образом, знание равновесных концентраций распределяемого вещества позволяет определить направление процесса-из какой фазы в какую будет переходить вещество М - и в определенной степени-скорость процесса. Как отмечалось выше, массообменные процессы протекают лишь при нарушении фазового равновесия. Только при этом условии распределяемое вещество переходит из одной фазы в другую. При этом различают два вида переноса вещества - Молекулярный и конвективный. В неподвижной среде распределяемое вещество переходит из внутренних слоев данной (первой) фазы к поверхности раздела фаз и, пройдя ее, распределяется по всему объему другой фазы, находящейся в контакте с первой. Такой переход массы вещества из одной фазы в другую называют Молекулярной диффузией. Она является следствием теплового движения молекул (ионов, атомов), которому оказывают сопротивление силы внутреннего трения. Конвективный перенос (конвективная диффузия) характеризуется перемещением (переносом) вещества движущимися частицами по-ока в условиях турбулентного движения фаз. Конвективный перенос вещества под действием турбулентных пульсаций иногда называют Турбулентной диффузией. Основным кинетическим уравнением массообменных процессов является уравнение массопередачи, которое основано на общих кинетических закономерностях химико-технологических процессов. 2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ 2.1 Характеристика процесса ректификации Ректификация - разделение жидких однородных смесей на составляющие вещества или группы составляющих в результате противоточного взаимодействия паровой смеси и жидкой смеси. При этом пар непрерывно обогащается низкокипящим (легколетучим) компонентом, а жидкость - высококипящим (труднолетучим) компонентом. Ректификацией может быть достигнута любая заданная степень разделения жидких смесей. Ректификация является сложным процессом дистилляции. Сущность процесса ректификации можно охарактеризовать как разделение жидкой смеси на дистиллят и остаток в результате противоточного взаимодействия жидкости с парами. Фракционная перегонка - способ перегонки с разделением смеси на несколько фракций, в различной степени обогащенных летучим компонентом. Этот процесс имеет большое значение в химической технике. В качестве примеров достаточно указать на разделение природных углеводородов нефти и синтетических углеводородов с целью получения моторных топлив, на выделение индивидуальных газов из их смесей путем предварительного ожижения и последующей ректификации жидкой смеси. Задача разделения многокомпонентных смесей в практике встречается гораздо чаще, чем двухкомпонентных, поэтому ректификация многокомпонентных смесей является основным процессом ректификации в производствах. Возможность разделения жидкой смеси на составляющие ее компоненты ректификацией обусловлена тем, что состав пара, образующегося над жидкой смесью, отличается от состава жидкой смеси в условиях равновесного состояния пара и жидкости. Известные равновесные данные для конкретной смеси позволяют проанализировать возможность разделения этой смеси, найти предельные концентрации разделения и рассчитать движущую силу процесса. Аппараты, предназначенные для проведения процессов абсорбции и ректификации, называют соответственно абсорберами и ректификационными колонами. В зависимости от способа создания поверхности фазового контакта эти аппараты можно подразделить на три основные группы: А) аппараты, в которых поверхностью фазового контакта является поверхность жидкости, растекающейся по специальной насадке; Б) аппараты, в которых поверхность фазового контакта создается потоками газа (пара) и жидкости; В) аппараты, в которых поверхность фазового контакта создается путем разбрызгивания жидкости; Аппараты, в которых поверхностью фазового контакта является поверхность жидкости, растекающейся по насадке. К аппаратам этого типа относятся пленочные аппараты и аппараты со смоченной насадкой. Пленочные аппараты выполняют преимущественно в виде листовой (плоскопараллельной) насадки, а в некоторых случаях в виде трубчатых теплообменников. Аппараты со смоченной насадкой выполняются в виде цилиндрической колонны, заполненной насадочными телами (насадочные колонны). В насадочных колоннах целесообразно размещать собирающие жидкость перегородки, расстояние между которыми равно трем-четырем диаметрам аппарата. Собирающие перегородки выполняются либо в виде усеченных конусов, либо в виде тарелок со сливными патрубками. Перегородки последнего типа более эффективны. Аппараты, в которых поверхность фазового контакта развивается потоками газа и жидкости. В эту группу аппаратов входят насадочные колонны, работающие в режиме подвисания и эмульгирования, а также колонны с ситчатыми, решетчатыми, колпачковыми и другими тарелками. Аппараты, в которых поверхность фазового контакта создается разбрызгиванием жидкости. В аппаратах этой группы поверхность соприкосновения фаз создается путем распыления или разбрызгивания жидкости в массе газа (пара) на мелкие капли. Абсорберы этого типа часто выполняются в виде колонн, в которых распыление жидкости производится сверху, а газ движется снизу вверх, и применяются главным образом для абсорбции из газового потока хорошо растворимых газов. Большой интерес представляют многоколонные ректификационные аппараты. В них можно проводить разделение с минимальным расходом теплоты, используя возможности испарения и конденсация при различных давлениях. Многоколонковые и, в частности, двухколонные аппараты применяют в технике разделения газов. Все разнообразие аппаратов для осуществления процессов дистилляции и ректификации сводится главным образом к разнообразию контактных устройств: насадок, тарелок. Насадочные колонны. Насадочные колонны нашли применение в тех случаях, когда необходимо обеспечить малую величину задержки жидкости в колонне, небольшой перепад давления, а также для малотоннажных производств. В последние годы были созданы новые типы насадок (кольца Паля, из поперечного металла, сеток и др.), которые оказались достаточно эффективными в колоннах большого диаметра. Это создало перспективы применения насадок некоторых типов для многоэтажных производств (вакуумная перегонка мазута и т.п.). Основные типы насадок. Насадки представляют собой твердые тела различной формы, которые загружают в корпус колонны внавал или укладывают определенным образом. Развитая поверхность насадок обуславливает значительную поверхность контакта пара и жидкости. Для заполнния насадочных колонн широко применяют кольца Рашига, изготовленные из различных материалов, что обеспечивает универсальность их практического использования. Однако кольца Рашига обладают относительно невысокой производительностью и сравнительно высоким сопротивлением. Последнее ограничевает их применение для вакуумных процессов. Созданные в последние годы различные модификации колец Рашига - кольца Паля, кольца Борад и другие позволили получить лучшие рабочие характеристики, чем при кольцах Рашига. В связи с необходимостью создания насадок с низким гидравлическим сопротивлением были разработаны различные варианты регулярной укладки насадочных тел, блочные насадки, а также насадки из сеток различных конструкций. Основными размерными характеристиками насадок являются удельная поверхность и свободный объем. Под удельной поверхностью насадки понимают суммарную поверхность всех насадочных тел в единице объема аппарата. Единица измерения в СИ м²/м³. Чем больше удельная поверхность насадки, тем выше ее эффективность, но больше гидравлическое сопротивление и меньше производительность. Под свободным объемом насадки понимают суммарный объем пустот между насадочными телами в единице объема аппарата. Единица измерения в СИ м³/ м³. Чем больше свободный объем насадки, тем выше ее производительность, меньше сопротивление и эффективность. С увеличением размеров насадочных тел возрастает производительность, но одновременно снижается эффективность разделения. Чтобы предотвратить растекание жидкости к стенкам колонны,насадку загружают в колонну отдельными слоями высотой от 1,5 до 3м. Между слоями насадки устанавливают распределители различных конструкций. Колонны, заполненные насадкой внавал, при диаметре до 150мм могут орошаться из единичного центрального источника. Для колонн большего диаметра необходимы оросители с большим числом источников: для неупорядоченных насадок 15-30 на 1 м² сечения колонны, для упорядоченных 35-50. Насадку укладывают на опорные распределительные решетки и плиты. Свободное сечение таких устройств должно быть по возможности больше и приближаться к величине свободного объема насадки. Чтобы насадка работала эффективно, поверхность насадки должна хорошо смачиваться жидкостью. Процессы ректификации осуществляются периодически или непрерывно при различных давлениях: под атмосферным давлением, под вакуумом (для разделения смесей высококипящих веществ), а также под давлением больше атмосферного. 2.2 Характеристика колонных аппаратов Ректификационные колонны Ректификационными колоннами называют вертикальные цилиндрические аппараты, предназначенные для четкого разделения смеси двух взаимно растворимых жидкостей с получением целевых продуктов требуемой концентрации. Такое разделение обеспечивается в результате процесса ректификации, под которым понимают двухсторонний массообмен между двумя фазами растворов, одна из которых паровая, другая — жидкая. Диффузионный процесс разделения жидкостей ректификацией возможен при условии, что температуры кипения этих жидкостей различны. Для осуществления диффузии пары и жидкости должны как можно лучше контактировать между собой, двигаясь в ректификационной колонне навстречу друг другу: жидкость под собственным весом сверху вниз, пары — снизу вверх. В результате противоточного контактирования паровая фаза обогащается низкокипящими компонентами, а жидкая высококипящими. Из свойств равновесной системы известно, что при контактировании неравновесных паровой и жидкой фаз система стремится к состоянию равновесия в результате массообмена и теплообмена между этими фазами. Следовательно, для протекания ректификации необходимо, чтобы контактируемые жидкость и пары при одном и том же давлении не были равновесными. Иными словами, нужно, чтобы температура жидкости была ниже температуры паров. Для обеспечения эффективного контактирования фаз ректификационные колонны снабжены внутренними устройствами. В зависимости от конструкции этих устройств осуществляется непрерывное (в насадочных колоннах) или ступенчатое (в тарельчатых колоннах) контактирование фаз. Принципиальная схема тарельчатой ректификационной колонны 1-штуцер вывода паров; 2- штуцер верхнего орошения; 3- люки; 4-штуцера отбора боковых погонов; 5- отбойники; 6- гидравлический затвор; 7- штуцера ввода сырья; 8- улита; 9- корпус; 10- корпус; 11- трубчатый маточки для подачи водяного пара; 12- опора; 13- штуцер для вывода кубового остатка |