Главная страница

1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медикогенетические аспекты семьи


Скачать 0.54 Mb.
Название1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины. Медикогенетические аспекты семьи
АнкорBiologia.docx
Дата26.04.2017
Размер0.54 Mb.
Формат файлаdocx
Имя файлаBiologia.docx
ТипДокументы
#5564
КатегорияБиология. Ветеринария. Сельское хозяйство
страница8 из 13
1   ...   5   6   7   8   9   10   11   12   13

48.Биологический возраст. Его маркеры. Хронобиологическая концепция определения биологического возраста.

Биологический возраст, или Возраст развития — понятие, отражающее степень морфологического и физиологического развития организма. Введение понятия «биологический возраст» объясняется тем, что календарный (паспортный, хронологический) возраст не является достаточным критерием состояния здоровья и трудоспособности стареющего человека.

Среди сверстников по хронологическому возрасту обычно существуют значительные различия по темпам возрастных изменений. Расхождения между хронологическим и биологическим возрастом, позволяющие оценить интенсивность старения и функциональные возможности индивида, неоднозначны в разные фазы процесса старения. Самые высокие скорости возрастных сдвигов отмечаются у долгожителей, в более молодых группах они незначительны.

Биологический возраст определяется совокупностью обменных, структурных, функциональных, регуляторных особенностей и приспособительных возможностей организма. Оценка состояния здоровья методом определения биологического возраста отражает влияние на организм внешних условий и наличие (отсутствие) патологических изменений.

Биологический возраст, помимо наследственности, в большой степени зависит от условий среды и образа жизни. Поэтому во второй половине жизни люди одного хронологического возраста могут особенно сильно различаться по морфо-функциональному статусу, то есть биологическому возрасту. Моложе своего возраста обычно оказываются те из них, у которых благоприятный повседневный образ жизни сочетается с положительной наследственностью.

Основные проявления биологического возраста при старении – нарушения важнейших жизненных функций и сужение диапазона адаптации, возникновение болезней и увеличение вероятности смерти или снижение продолжительности предстоящей жизни. Каждое из них отражает течение биологического времени и связанное с ним увеличение биологического возраста.

Самыми информативными маркерами биологического возраста сквозь весь интервал наблюдения 1-17 лет являютя скелетные размеры тела, обнаруживающие максимальное число свзей со всеми другими критериями биологического возраста. Акцелерированность скелетного рзвития в процессе роста у детей в целом связана с акцелерированностью и по другим показателям биологического возраста.

49. Видовая продолжительность жизни человека. Клиническая и биологическая смерть. Реанимация.

Циркадианна организация живой системы, все амплитудно-фазовые отношения испытывают изменения в онтогенезе. Важнейший показатель временной организации организма – амплитудно-фазовые характеристики его циркадианного ритма представляется с этих позиций в форме спирали с постепенно возрастающими оборотами, с последующим, на поздних этапах онтогенеза, сокращением оборотов спирали, а также идущим процессам сдвига акрофаз на другие часы.

Старение приводит к прогрессивному повышению веро­ятности смерти. Таким образом, биологический смысл старения заключается в том, что оно делает неизбежной смерть организма. Последняя же представляет собой универсальный способ ограни­чить участие многоклеточного организма в размножении.

При прекращении работы сердца и остановке дыхания наступает смерть. Организму не хватает кислорода; недостаток кислорода обусловливает отмирание мозговых клеток. В связи с этим при оживлении основное внимание следует сосредоточить на деятельности сердца и легких.

Смерть состоит из двух фаз - клинической и биологической смерти. Во время клинической смерти, человек уже не дышит, сердце перестает биться, однако необратимые изменения в клетках головного мозга не происходят. Клиническая смерть — это переходное состояние от жизни к смерти.

Различные органы человеческого тела сохраняют способность жить после смерти разное время. Предельный срок клинической смерти 5—6 минут, т.е. время, в течение которого сохраняет жизнедеятельность кора головного мозга. После этого срока наступает биологическая смерть. Если клиническая смерть является обратимым явлением, то биологическая смерть в настоящее время необратима. Реанимация — (от лат. animatio - оживление) восстановление резко нарушенных или утраченных жизненно важных функций организма. Проводится при терминальных состояниях, в том числе при клинической смерти. Реанимация включает: массаж сердца, искусственное дыхание, нагнетание крови в артерии и др. меры.

50. Гипотеза «волчка». Гетерохронность, гетеротопность, гетерокатефтентность процессов старения.

В 1980 Губиным Г.Д. была выдвинута концепция, согласно которой циркадианная организация живой системы, все амплитудно-фазовые отношения испытывают изменение в онтогенезе. Весь организм представляется с точки зрения концепции волчка в форме спирали с постепенно возрастающими оборотами с последующим, на более поздних этапах онтогенеза, сокращением оборотов спирали, а так же идущими процессами сдвига акрофаз.

Гетерохронность – это различие наступления старения различных органов и тканей. Атрофия вилочковой железы начинается у человека в подростковом возрасте, половых желез – в климактерическом периоде, а некоторые функции гипофиза сохраняются на высоком уровне до глубокой старости. Вилочковая железа – это дольчатая железа позвоночных животных и человека, расположенная справа и слева от трахеи. Хорошо развита в молодом возрасте. Участвует в кроветворении, продуцируя лимфоциты, в регуляции роста и общего развития организма, в формировании иммунитета.

Гетеротопность – выраженность процесса старения – неодинакова для разных органов и разных структур одного и того же органа. Возрастные изменения прежде всего начинают сказываться на нервной и сердечно-сосудистой системах, на функциях дыхания, обмене веществ и работе опорно-двигательного аппарата. Изменения со стороны центральной нервной системы дают о себе знать ухудшением памяти, ослаблением деятельности анализаторов (слух, зрение), рассеянностью, повышенной раздражительностью, преобладанием минорного настроения. Но особенно ощутимы изменения в сердечно-сосудистой системе.

Гетерокатефтенность (от греч. “катефтенсис” — направление) — разнонаправленность возрастных изменений, связанная, например, с подавлением одних и активизацией других жизненных процессов в стареющем организме.

51, 52. Влияние фотопериодических факторов на сезонную адаптацию у простейших и многоклеточных, на ритмы рождаемости. Роль мелатонина. Климатогеографические особенности влияния фотопериодизма на жизнедеятельность. Полярная ночь и полярный день. Проблема «светового загрязнения».

Основные функции: Регулирует деятельность эндокринной системы, кровяное давление, периодичность сна, регулирует сезонную ритмику у многих животных, замедляет процессы старения, усиливает эффективность функционирования иммунной системы, обладает антиоксидантными свойствами, влияет на процессы адаптации при смене часовых поясов, кроме того, мелатонин участвует в регуляции, кровяного давления, функций пищеварительного тракта, работы клеток головного мозга.

Влияние на сезонную ритмику и размножение

Так как продукция мелатонина зависит от длины светового дня, многие животные используют ее как «сезонные часы». У людей, как и у животных, продукция мелатонина летом меньше, чем зимой. Таким образом, мелатонин может регулировать функции, зависящие от фотопериода — размножение, миграционное поведение, сезонную линьку. У видов птиц и млекопитающих, которые размножаются при длинном дне, мелатонин подавляет секрецию гонадотропинов и снижает уровень половой активности. У животных, размножающихся при коротком световом дне, мелатонин стимулирует половую активность. Влияние мелатонина на репродуктивную функцию у человека недостаточно изучено. В период полового созревания пиковая (ночная) концентрация мелатонина резко снижается. У женщин с гипофизарной аменореей концентрация мелатонина достоверно выше, чем у здоровых. Эти данные позволяют предполагать, что мелатонин подавляет репродуктивные функции у женщин.

Циркадный ритм и сон

Одним из основных действий мелатонина является регуляция сна. Мелатонин — основной компонент пейсмейкерной системы организма. Он принимает участие в создании циркадианного ритма: он непосредственно воздействует на клетки и изменяет уровень секреции других гормонов и биологически активных веществ, концентрация которых зависит от времени суток. Влияние светового цикла на ритм секреции мелатонина показано в наблюдении за слепыми. У большинства из них обнаружена ритмичная секреция гормона, но со свободно меняющимся периодом, отличающимся от суточного (25-часовой цикл по сравнению с 24-часовым суточным). То есть у человека ритм секреции мелатонина имеет вид циркадианной мелатониновой волны, «свободно бегущей» в отсутствие смены циклов свет-темнота. Сдвиг ритма секреции мелатонина происходит и при перелёте через часовые пояса.

Роль эпифиза и эпифизарного мелатонина в суточной и сезонной ритмике, режиме сна-бодрствования на сегодняшний день представляется несомненной. У диурнальных (дневных) животных (в том числе у человека) секреция мелатонина эпифизом совпадает с привычными часами сна. Проведенными исследованиями было доказано, что повышение уровня мелатонина не является обязательным сигналом к началу сна. У большинства испытуемых прием физиологических доз мелатонина вызывал лишь мягкий седативный эффект и снижал реактивность на обычные окружающие стимулы.

С возрастом активность эпифиза снижается, поэтому количество мелатонина уменьшается, сон становится поверхностным и беспокойным, возможна бессонница. Мелатонин способствует устранению бессонницы, предотвращает нарушение суточного режима организма и биоритма.

Основное влияние мелатонина на эндокринную систему у многих видов заключается в торможении секреции гонадотропинов. Кроме того, снижается, но в меньшей степени, секреция других тропных гормонов передней доли гипофиза — кортикотропина, тиротропина, соматотропина. Мелатонин снижает чувствительность клеток передней доли к гонадотропин-рилизинг фактору и может подавлять его секрецию.

Данные экспериментов свидетельствуют о том, что под влиянием мелатонина повышается содержание ГАМК - в ЦНС и серотонина в среднем мозге и гипоталамусе. Известно, что ГАМК является тормозным медиатором в ЦНС, а снижение активности серотонинэргических механизмов может иметь значение в патогенезе депрессивных состояний.

Недостаток мелатонина в организме

Эксперименты на лабораторных животных показали, что при недостатке мелатонина, вызванном удалением рецепторов, животные начинали быстрее стареть: раньше начиналась менопауза, накапливались свободнорадикальные повреждения клеток, снижалась чувствительность к инсулину, развивались ожирение и рак.

Световое загрязнение — осветление ночного неба искусственными источниками света, свет которых рассеивается в нижних слоях атмосферы. Иногда это явление также называют световым смогом.

Искусственное осветление окружающей среды влияет на цикл роста многих растений. Распространённые источники белого света с большим удельным весом голубого света в спектре мешают ориентации многих видовнасекомых, ведущих ночной образ жизни, а также сбивают с пути перелётных птиц, старающихся облетать очаги цивилизации. Согласно наблюдениям, каждый уличный светильник ежесуточно является причиной гибели 150 насекомых. С учётом числа светильников в одной только Германии каждую ночь от них погибает более миллиарда насекомых. При этом не учтены многие другие источники света, такие как освещение промышленных комплексов, светящаяся реклама и освещение жилых домов.

Не до конца исследовано воздействие светового загрязнения на хронобиологию человеческого организма. Возможны отклонения в гормональном балансе, тесно связанном с воспринимаемым циклом дня и ночи. Из более очевидных последствий нужно отметить менее крепкий сон, и, как следствие, быструю утомляемость.

Полярная ночь — период, когда Солнце более 24 часов (то есть более суток) не появляется из-за горизонта. 

Поля́рный де́нь — период, когда Солнце не заходит за горизонт дольше 1 суток.

53. Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и природа ритмов. Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт Ж. де Мейрана. Правило Ю. Ашоффа.

Хрономедицина — это область медицины, в которой используется представление о биологических ритмах, которые изучаются в рамках хронобиологии. Биологические ритмы — эторитмические проявления временной структуры организма, поэтому хрономедицина не исчерпывается одними только биологическими ритмами, а пытается рассмотреть всю «временную структуру организма» в целом.

Хрономедицина (как и сама хронобиология) — это молодая область междисциплинарных исследований, которая находится в процессе становления. В хрономедицине находят свое применение методы математической обработки временных рядов, которые используются для анализа ритмических проявлений физиологических процессов организма.

Таким образом хрономедицина оказывается на стыке наук: медицины (диагностика и лечение заболеваний), хронобиологии (разработка теоретических представлений) и математики(разработка методов математического анализа ритмических проявлений).

Хроном- термин обозначающий комплексную временную организацию живых систем независимо от уровня организации и сложности, состоит из ритмов разных частот, тренды, шумы.

Десинхронизация – состояние двух или более, ранее синхронизированных, ритмических переменных, переставших показывать те же частоты и акрофазные взаимоотношения и демонстрирующие изменение временных взаимосвязей:

Внутренняя – десинхронизация одного от другого из двух или более ритмов в биосистеме путем появление ранее отсутствовавших отличий в частоте и изменения во временном отношении двух ритмов с той же частотой.

Внешняя – десинхронизация биоритмов о т циклов окружающей среды.

Десинхроноз – патологическое состояние, вызванное внешней или внутренней десинхронизацией биоритмов.

Хронопатология – изменение биологической временной структуры индивидуума, предшествующие функциональным расстройствам или органическим заболеваниям и зависящим от времени проявления болезни.

Хронофармокология и хронотерапия – лечения на основе индивидуального подхода(индивидуальные биоритмы).

Ашоффа правило
Физиолог Юрген Ашофф – основатель хронобиологии, установил  в 1959 г. т.н. правило Ашоффа. Поскольку циркадные колебания организма тесно связаны с фотопериодичностью, у дневных животных бодрствование более продолжительно при постоянной темноте, в то время как у ночных животных активный период (бодрствование) более продолжителен при постоянном освещении.

54. Хрономедицина. Понятие «Хроном», его компоненты. Циркадианная система. Доказательства эндогенности циркадианного ритма. Понятие о «свободно-текущем» ритме. Правило Ашоффа. Десинхроноз и его формы. Хронопатология. Хронотерапия. Хронофармакология.

Хрономедицина — это область медицины, в которой используется представление о биологических ритмах, которые изучаются в рамках хронобиологии. Биологические ритмы — эторитмические проявления временной структуры организма, поэтому хрономедицина не исчерпывается одними только биологическими ритмами, а пытается рассмотреть всю «временную структуру организма» в целом.

Хрономедицина (как и сама хронобиология) — это молодая область междисциплинарных исследований, которая находится в процессе становления. В хрономедицине находят свое применение методы математической обработки временных рядов, которые используются для анализа ритмических проявлений физиологических процессов организма.

Таким образом хрономедицина оказывается на стыке наук: медицины (диагностика и лечение заболеваний), хронобиологии (разработка теоретических представлений) и математики(разработка методов математического анализа ритмических проявлений).

Хроном- термин обозначающий комплексную временную организацию живых систем независимо от уровня организации и сложности, состоит из ритмов разных частот, тренды, шумы.

Десинхронизация – состояние двух или более, ранее синхронизированных, ритмических переменных, переставших показывать те же частоты и акрофазные взаимоотношения и демонстрирующие изменение временных взаимосвязей:

Внутренняя – десинхронизация одного от другого из двух или более ритмов в биосистеме путем появление ранее отсутствовавших отличий в частоте и изменения во временном отношении двух ритмов с той же частотой.

Внешняя – десинхронизация биоритмов о т циклов окружающей среды.

Десинхроноз – патологическое состояние, вызванное внешней или внутренней десинхронизацией биоритмов.

Хронопатология – изменение биологической временной структуры индивидуума, предшествующие функциональным расстройствам или органическим заболеваниям и зависящим от времени проявления болезни.

Хронофармокология и хронотерапия – лечения на основе индивидуального подхода(индивидуальные биоритмы).

Ашоффа правило
Физиолог Юрген Ашофф – основатель хронобиологии, установил  в 1959 г. т.н. правило Ашоффа. Поскольку циркадные колебания организма тесно связаны с фотопериодичностью, у дневных животных бодрствование более продолжительно при постоянной темноте, в то время как у ночных животных активный период (бодрствование) более продолжителен при постоянном освещении.

55. Здоровье и биологические ритмы. Факторы определяющие здоровье. Уравнение Гомперца-Мейкема.

Факторами, обусловливающими здоровье, являются:

- образ жизни;

- биологические (наследственность, тип высшей нервной деятельности, конституция, темперамент и т. д.);

- состояние окружающей среды;

- природные (климат, погода, ландшафт, флора, фауна и т. д.);

- социально-экономические;

- уровень развития здравоохранения.

Закон Гомперца-Мейкема можно записать следующим образом:

http://pics.livejournal.com/sourdummy/pic/0003ezbs
где u(x) — вероятность смерти людей возраста x, или, иначе говоря, доля ежегодно умирающих людей заданного возраста. Достоинство приведенной формулы заключается не только в удобстве использования ее для целей страхования жизни, но и в том, что она позволяет расщепить общую смертность на две составляющие: на смертность, не зависящую от возраста, и на смертность, которая от возраста зависит.

56. Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины.

Генетика—- наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822—1884) при скрещивании различных сортов гороха.

Наследственность — это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития.Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма.

В то же время в природе существуют различия между особями как разных видов, так и одного и того же вида, сорта, породы и т. д. Это свидетельствует о том, что наследственность неразрывно связана с изменчивостью.

Изменчивость — способность организмов в процессе онтогенеза приобретать новые признаки и терять старые. Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей. Причиной этого является то, что признаки и свойства любого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды, в которых шло индивидуальное развитие каждой особи. Поскольку условия среды никогда не бывают одинаковыми даже для особей одного вида или сорта (породы), становится понятным, почему организмы, имеющие одинаковые генотипы, часто заметно отличаются друг от друга по фенотипу, т. е. по внешним признакам.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования: 1) механизмов хранения и передачи генетической информации от родительских форм к дочерним; 2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды; 3) типов, причин и механизмов изменчивости всех живых существ; 4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся: 1) выбор наиболее эффективных типов гибридизации и способов отбора; 2) управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов; 3) искусственное получение наследственно измененных форм живых организмов; 4) разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных; 5) разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный,

организменный, популяционный) в генетике используют разнообразные методы современной биологии:гибридологический -гибридизация (скрещивание) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства , цитогенетический-микроскопическое изучение хромосом человека, биохимический - позволяет обнаружить нарушения в обмене веществ, вызванные мутациями генов и, как следствие, изменением активности различных ферментов , генеалогический- метод изучения характера наследования определенного признака или оценки вероятности его появления в будущем у членов изучаемой семьи, основанный на выяснении родственных связей (родословной) и прослеживании признака среди всех родственников. , близнецовый - используется для выяснения наследственной обусловленности признаков и хорошо демонстрирует взаимоотношения между генотипом и внешней средой.

Первый этап ознаменовался открытием Г. Менделем (1865) факторов наследственности и разработкой гибридологического метода,т. е. правил скрещивания организмов и учета признаков у их потомства. Мендель впервые осознал, что, начав с самого простого случая - различия по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей наследования признаков. Менделевские законы наследственности заложили основу теории гена - величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901-1903 г.г. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (цитогенетика). Т. Бовери (1902-1907), У .Сэттон и Э .Вильсон (1902-1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз).

Третий этап в развитии генетики отражает достижения молекулярной биологии. И связан с использованием методов и принципов точных наук - физики, химии, математики, биофизики и других. А также изучение явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами. Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

57. Генотип, геном, фенотип. Фенотип как результат реализации наследственной информации в определённых условиях среды.

Геном — вся совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Он обеспечивает формирование видовых характеристик организмов в ходе их онтогенеза.

Генотип — совокупность генов, образованная при половом размножении в процессе оплодотворения при объединении геномов двух родительских клеток, генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе.

Фенотип — видовые и индивидуальные морфологические, физиологические и биохимические свойства на всем протяжении индивидуального развития. Ведущая роль в формировании фенотипа — наследственная информация, заключенная в генотипе. Наряду с этим результат наследственной программы (в генотипе) зависит от условий, в которых осуществляется этот процесс. В случае гетерозиготности развитие данного признака будет зависеть от взаимодействия аллельных генов.

58. Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявление, рецессивность, кодоминирование, аллельная комплементация и исключение.

Доминирование — это такое взаимодействие аллельных генов, при котором проявление одного из аллелей (А) не зависит от присутствия в генотипе другого (А’). Этот аллель доминантный, второй рецессивный (пример: группа крови).

Неполное доминирование — фенотип гетерозигот ВВ’ отличается от фенотипа гомозигот по обеим аллелям (ВВ, В’В’) промежуточным проявлением признака. Это происходит, т.к. аллель, способная сформировать нормальный признак находится у гетерозигот в двойной дозе ВВ, а у гомозигот ВВ’. Генотипы отличаются экспрессивностью (степень выраженности признака). Пример: заболевания у человека, проявляющиеся клинически у гетерозигот, а у гомозигот заканчивающиеся смертью.

Кодоминирование — каждый из аллелей проявляет свое действие, в результате — промежуточный вариант признака (Группа крови, аллели которые по отдельности формируют 2 и 3 группы крови, вместе образуют 4).

Аллельное исключение — вид взаимодействия аллельных генов в генотипе. Например, инактивация одного из аллелей в сосотаве Х-хромосомы способствует тому, что разных клетках организма, мозаичных по функционирующей хромосоме, фенотипически проявляются разные аллели.

Аллельная комплементация- образование немутантного фенотипа при наличии двух независимых мутаций в одном и том же локусе, возникающих на разных гомологичных хромосомах.

59. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Тест полового хроматина и его применение в медицине.

Каждый организм характеризуется определенным набором хромосом, который называется кариотипом. Кариотип человека состоит из 46 хромосом – 22 пары аутосом и две половые хромосомы. У женщины это две X хромосомы (кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). В каждой хромосоме находятся гены, ответственные за наследственность. Исследование кариотипа проводится с помощью цитогенетических и молекулярно-цитогенетических методов.
Половой хроматин — это плотное окрашивающееся тельце (тельце Барра), которое обнаруживается при микроскопии не делящейся в данный момент клетки. Он представляет собой спирализованную Х-хромосому. Исследование полового хроматина проводят при подозрении на генетические заболевания, связанные с изменением количества Х-хромосом (синдромы Клайнфельтера, Шерешевского-Тернера и т.п.). Для исследования используют клетки эпителия ротовой полости, получаемые из соскоба с внутренней поверхности щеки.

Методики определения полового хроматина, позволяющие выявить наличие половых хромасом, весьма просты и доступны для массового применения и скринирования. Особенно это относится к определению женского полового Х-хроматина в буккальном мазке с окраской ацетоарсеином. При микоскопировании у здоровой девочки (женщины) под оболочкой ядер клеток эпителия в 20—82 % случаев обнаруживают глыбки Х-хроматина (тельца Барра). Отсутствие их (как у мужчин), уменьшенное их количество или наличие двойных, тройных телец Барра — свидетельство аномального состава Х-хромосом и подтверждение хромосомной болезни. Обнаружение телец Барра у мальчиков говорит о наличии дополнительных Х-хромосом (вариантах синдрома Клайфельтера).

Определение мужского полового хроматина в буккальных мазках производят методом люминесцентной микроскопии при окраске хромосом акрихинипритом: ярко флюоресцирует длинное плечо Y-хромосомы. Это важно для подтверждения синдромов дубль Y и дубль XY.

Показания к исследованию полового хроматина:

1) наличие клинических признаков синдрома Шерешевского—Тернера, синдрома Клайнфельтера; 2) наличие признаков интерсексуальности, сомнительного пола, гермафродитизма, явлений маскулинизации (Y- и Х-хроматин), феминизации у мужчин (Х-хроматин); 3) низкий рост у девочек, женщин (Х-хроматин); 4) высокий рост у мужчин (Y- и Х-хроматин); 5) умственная отсталость неясного генеза, психопатоподобные черты личности; 6) аменорея первичная и вторичная.

Все методы дифференциальной окраски хромосом позволяют выявлять их структурную организацию, которая выражается в появлении поперечной исчерченности, разной в разных хромосомах, а также некоторых других деталей.

Дифференциальное окрашивание хромосом. Разработан ряд методов окрашивания (бэндинга), позволяющих выявить комплекс поперечных меток (полос, бэндов) на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов. Аллельный полиморфизм характерен для многих генов и встречается в большинстве популяций. Выявление полиморфизмов на цитогенетическом уровне не имеет диагностического значения.

А. Q-окрашивание. Первый метод дифференциального окрашивания хромосом был разработан шведским цитологом Касперссоном, использовавшим с этой целью флюоресцентный краситель акрихин-иприт. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции — Q-сегменты. Метод лучше всего подходит для исследования Y-хромосом и потому используется для быстрого определения генетического пола, выявления транслокаций (обменов участками) между X- и Y-хромосомами или между Y-хромосомой и аутосомами, а также для просмотра большого числа клеток, когда необходимо выяснить, имеется ли у больного с мозаицизмом по половым хромосомам клон клеток, несущих Y-хромосому.

Б. G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы — G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода цитогенетического анализа. G-окрашивание дает наилучшие результаты при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

В. R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы или флюоресцентный краситель акридиновый оранжевый. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

Г. C-окрашивание используют для анализа центромерных районов хромосом (эти районы содержат конститутивный гетерохроматин) и вариабельной, ярко флюоресцирующей дистальной части Y-хромосомы.

Д. T-окрашивание применяют для анализа теломерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром (AgNOR-окрашивание) используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.

60, 61. Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство.

Наследственность — свойство клеток или организмов в процессе самовоспроизведения передавать новому поколению способность к определенному типу обмена веществ и индивидуального развития, в ходе которого у них формируется общие признаки и свойства данного типа клеток и видов организмов, а также некоторые индивидуальные особенности родителей.

Изменчивость — свойство живых систем приобретать изменения и существовать в различных вариантах. Несмотря на то, что по своим результатам наследственность и изменчивость разнонаправлены, в живой природе эти два фундаментальных свойства образуют неразрывное единство, чем достигается одновременно сохранение в процессе эволюции имеющихся биологически целесообразных качеств и возникновение новых, делающих возможным существование жизни в разнообразных условиях. Таким образом, частичный материал должен обладать способностью к самовоспроизведению, чтобы в процессе размножения передавать наследственную информацию, на основе которой будет осуществлено формирование нового поколения. Для обеспечения устойчивости характеристик в ряду поколений наследственный материал должен сохранять постоянно свою организацию. Также он должен обладать способностью приобретать изменения и воспроизводить их, обеспечивая возможность исторического развития живой материи в имеющихся условиях. Репарация — молекулярное восстановление. Механизм репарации основан на наличие в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Каждая хромосома представляет собой группу сцепления, их число равно гаплоидному набору хромосом. Диплоидный набор хромосом содержит 46 хромосом.

62. Множественные аллели и полигенное наследование на примере человека. Наследование гиперхолестеринемии, муковисцидоза, серповидноклеточной анемии, фенилкетонурии и др.

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом. Так, кроме основных доминантного и рецессивного аллельных генов, между ними возникают промежуточные, которые по отношению к доминатному ведут себя как рецессивные, а по отношению к рецессивному - как доминантные гены.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

По типу множественных аллелей наследуются группы крови О, А, В и АВ у человека. Несколько упрощая фактическое положение вещей, можно сказать, что четыре группы крови человека определяются антигенами А и В. Если ни одного из них нет, то у человека первая (нулевая) группа крови. Присутствие антигена А дает вторую группу, антигена В - третью, совместное их присутствие обусловливает развитие четвертой группы. Сделано предположение, что нулевая группа зависит от рецессивного гена, обозначаемого через i, над ним доминирует как ген IA, дающий вторую группу, так и ген Iв, дающий третью группу. Гены IA и IB вместе дают четвертую группу крови. Первая группа  крови бывает лишь при генотипе ii, вторая - при генотипах IАIА и IAi, третья - при генотипах IВIB и IBi, четвертая - при генотипе IАIВ.

Наряду с отдельными генами, представленными множеством форм, существуют и полигенные признаки, т.е. признаки, контролируемые многими генами, находящимися в разных участках хромосомы, а иногда даже и в разных парах хромосом. У человека среди известных нам примеров этого рода можно назвать такие признаки, как рост, умственные способности, телосложение, а также цвет волос и цвет кожи.

Молекулярные болезни - врождённые ошибки метаболизма, заболевания, обусловленные наследственными нарушениями обмена веществ. Термин предложен американским химиком Л. Полингом. они возникают в результате пониженной активности или полного отсутствия фермента, контролирующего определённый этап обмена веществ.

Серповидно-клеточная анемия — это наследственная гемоглобинопатия, связанная с нарушением строения белка гемоглобина. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А. Под микроскопом имеют характерную серпообразную форму (форму серпа). Усталость и анемия, приступы боли, дактилит, бактериальные инфекции, тромбоз крови в селезенке и печени, легочные и сердечные травмы. Лечение: применяется гидроксимочевина.

Фенилкетонурия - связанное с нарушением метаболизма аминокислот. Сопровождается накоплением фенилаланина и его токсических продуктов, что приводит к тяжёлому поражению ЦНС, проявляющемуся в виде нарушения умственного развития. Лечение диеты.

Болезнь Вильсона-Коновалова - нарушение метаболизма меди, приводящее к болезням ЦНС и внутренних органов. Заболевание передается по аутосомно-рецессивному типу. Лечение: применяется диета № 5 (исключением медьсодержащих продуктов), британский антилюизит (инъекции), унитиол (5% раствор инъекции).

Муковисцидоз - поражение желез внешней секреции, нарушениями функций органов дыхания и ЖКТ. Лечение: мероприятия по уменьшению вязкости мокроты и улучшению дренажа бронхов, антибактериальную терапию, диеты.

63. Наследование групп крови и резус-фактора. Практическое значение.

Группа крови

На эритроцитах имеются специальные белки - антигены групп крови. В плазме к этим антигенам имеются антитела. При встрече одноименных антигена и антитела происходит их взаимодействие и склеивание эритроцитов в монетные столбики. В таком виде они не могут переносить кислород. Поэтому в крови одного человека не встречаются одноименные антиген и антитело. Их комбинация - группа крови.Антигены и антитела групп крови, как все белки организма, наследуются - именно белки, а не сами группы крови, поэтому комбинация этих белков у детей может отличаться от комбинации у родителей и получаться другая группа крови. Существует множество антигенов на эритроцитах и множество систем групп крови. В рутинной диагностике пользуются определением группы крови по системе АВ0.

Антигены: А, В; антитела: альфа, бета.

Наследование: ген IA кодирует синтез белка А, IB - белка В, i не кодирует синтез белков.

Группа крови I (0). Генотип ii. Отсутствие антигенов на эритроцитах, присутствие обоих антител в плазме

Группа крови II (А). Генотип IA\IA или IА\i. Антиген А на эритроцитах, антитело бета в плазме

Группа крови III (В). Генотип IB\IB или IВ\i. Антиген В на эритроцитах, антитело альфа в плазме

Группа крови IV (АВ). Генотип IA\IB. Оба антигена на эритроцитах, отсутствие антител в плазме.

Наследование:

У родителей с первой группой крови может родиться ребенок только с первой группой.

У родителей со второй - ребенок с первой или второй.

У родителей с третьей - ребенок с первой или третьей.

У родителей с первой и второй - ребенок с первой или второй.

У родителей с первой и третьей - ребенок с первой или третьей.

У родителей с второй и третьей - ребенок с любой группой крови.

У родителей с первой и четвертой - ребенок с второй и третьей.

У родителей с второй и четвертой - ребенок с второй, третьей и четвертой

У родителей с третьей и четвертой - ребенок с второй, третьей и четвертой.

У родителей с четвертой - ребенок с второй, третьей и четвертой.

Если у одного из родителей первая группа крови, у ребенка не может быть четвертой. И наоборот - если у одного из родителей четвертая, у ребенка не может быть первой.

Групповая несовместимость:

При беременности может возникнуть не только резус-конфликт, но и конфликт по группам крови. Если плод имеет антиген, которого нет у матери, она может вырабатывать против него антитела: антиА, антиВ. Конфликт может возникнуть если плод имеет II группу крови, а мать I или III; плод III, а мать I или II; плод IV, а мать любую другую. Нужно проверять наличие групповых антител во всех парах, где у мужчины и женщины разные группы крови, за исключением случаев, когда у мужчины первая группа.

Резус-фактор

Белок на мембране эритроцитов. Присутствует у 85% людей - резус-положительных. Остальные 15% - резус-отрицательны.

Наследование: R- ген резус-фактора. r - отсутствие резус фактора.

Родители резус-положительны (RR, Rr) - ребенок может быть резус-положительным (RR, Rr) или резус-отрицательным (rr).

Один родитель резус-положительный (RR, Rr), другой резус-отрицательный (rr) - ребенок может быть резус-положительным (Rr) или резус-отрицательным (rr).

Родители резус-отрицательны, ребенок может быть только резус-отрицательным.

Резус-фактор, как и группу крови, необходимо учитывать при переливании крови. При попадании резус фактора в кровь резус-отрицательного человека, к нему образуются антирезусные антитела, которые склеивают резус-положительные эритроциты в монетные столбики.

Резус-конфликт

Может возникнуть при беременности резус-отрицательной женщины резус-положительным плодом (резус-фактор от отца). При попадании эритроцитов плода в кровоток матери, против резус-фактора у нее образуются антирезусные антитела. В норме кровоток матери и плода смешивается только во время родов, поэтому теоретически возможным резус-конфликт считается во вторую и последующие беременности резус-положительным плодом. Практически в современных условиях часто происходит повышение проницаемости сосудов плаценты, различные патологии беременности, приводящие к попаданию эритроцитов плода в кровь матери и во время первой беременности. Поэтому антирезусные антитела необходимо определять при любой беременности у резус-отрицательной женщины начиная с 8 недель (время образования резус-фактора у плода). Для предотвращения их образования во время родов, в течение 72 часов после любого окончания беременности срока более 8 недель вводят антирезусный иммуноглобулин.

c:\users\воробьевы а.с\desktop\0002.gif

64. Основные положения хромосомной теории наследственности. Кариотип и идеограмма хромосом человека. Характеристика кариотипа человека в норме. Половой хроматин.

Основоположник теории Томас Гент Морган, американский генетик, нобелевский лауреат, выдвинул гипотезу об ограничении законов Менделя.

В экспериментах он использовал плодовую мушку-дрозо-филу, обладающую важными для генетических экспериментов качествами: неприхотливостью, плодовитостью, небольшим количеством хромосом (четыре пары), множеством четко выраженных альтернативных признаков.

Основные положения хромосомной теории наследственности:

• каждый ген имеет в хромосоме определенный локус (место);

• гены в хромосоме расположены в определенной последовательности;

• гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;

• частота кроссинговера между генами равна расстоянию между ними;

• набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида.

 

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данногобиологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Кариотип человека (от греч. - орех, ядро и - отпечаток, тип) — диплоидный хромосомный набор человека, представляющий собой совокупность морфологически обособленных хромосом, внесённых родителями при оплодотворении.

Хромосомы набора генетически неравноценны: каждая хромосома содержит группу разных генов. Все хромосомы в кариотипе человека делятся на аутосомы и половые хромосомы. В кариотипе человека 44 аутосомы (двойной набор) - 22 пары гомологичных хромосом и одна пара половых хромосом — XX у женщин и ХУ у мужчин. По форме и размерам все аутосомы-гомологи делятся на 7 групп, обозначаемых латинскими буквами от А до G.

Идиограмма  — графическое изображение отдельных хромосом со всеми их структурными характеристиками.

Половой хроматин — это плотное окрашивающееся тельце (тельце Барра), которое обнаруживается при микроскопии не делящейся в данный момент клетки. Он представляет собой спирализованную Х-хромосому.

65. Сцепленная с полом наследственность. Наследование признаков, контролируемых генами Х и Y хромосомами человека. Полигенное наследование.

Сцепленное наследование — феномен скоррелированного наследования определённых состояний генов, расположенных в одной хромосоме.

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах.

Особей женского пола, гетерозиготных по любому из сцепленных с полом признаков, называют носителями соответствующего рецессивного гена. Они фенотипически нормальны, но половина их гамет несет рецессивный ген. Несмотря на наличие у отца нормального гена, сыновья матерей - носителей с вероятностью 50% будут страдать гемофилией. 

НАСЛЕДОВАНИЕ ПОЛИГЕННОЕ

Тип наследования признаков, обусловленных действием многих генов, каждый из которых оказывает лишь слабое действие. Фенотипически проявление полигенно обусловленного признака зависит от условий внешней среды. У потомков наблюдается непрерывный ряд вариаций количественного проявления подобного признака, а не появление четко различающихся по фенотипу классов. В ряде случаев при блокировании отдельного гена признак не проявляется вообще, несмотря на его полигенную обусловленность. Это свидетельствует о пороговом проявлении признака.

66. Цитоплазматическая наследственность. Роль в передаче наследственных заболеваний. Наследование зрительной невропатии Лебера и др.

Цитоплазматическая наследственность – нехромосомная, путь передачи наследственной информации через цитоплазму. Характерная черта - наследование по линии матери.

передача в ряду поколений генов, локализованных вне ядра. Для нехромосомного наследования нередко характерны сложные картины расщепления, не согласующиеся с законами Менделя. Часто этот тип наследования также называют цитоплазматическим наследованием, понимая под этим наследование генов, расположенных не только в самой цитоплазме, но и органеллах клетки, имеющих собственную ДНК(пластидов, митохондрий), а также инородных генетических элементов (например, вирусов), поэтому его следует отличать от собственно цитоплазматического наследования, при котором наследственные признаки детерминируются не органеллами, а самой цитоплазмой.

Такие заболевания, как, например, наследственная дистрофия зрительного нерва (нейропатия Лебера), передаются по наследству только по материнской линии, однако связаны не с повреждением генетической информации Х-хромосомы, а с мутациями генов митохондрий. Митохондрии передаются потомкам с яйцеклеткой, поэтому их дефекты наследуются только по материнской линии.

Наследственная нейропатия зрительного нерва Лебера (LHON) является двухсторонней, часто последовательной, под острой оптической нейропатией, при которой первично поражается центральное зрение. Соотношение полов пораженных м : ж = 5:1, средний возраст манифестации - от 23 до 26 лет (самое раннее начало в 4 года и самое позднее - в 86 лет). Наиболее часто встречается у жителей Северной Европы или японцев.

Острота зрения варьирует, но обычно снижается до 20/200 или более. Цветовое зрение снижается значительно, характерна центроцекальная скотома. При прогрессировании LHON выявляется неспецифическая атрофия зрительного нерва с аномальными папилломакулярными нервными волокнами и обеднением сосудами.

Проведение дополнительных исследований нецелесообразно: ЭЭГ, спинномозговая пункция и КТ мозга непоказательны. При МРТ могут выявляться неспецифические повреждения зрительного нерва. При ЭКГ обнаруживаются нарушения проведения (удлинение интервала РR, синдром Вольфа-Паркинсона-Уайта). Заболевание, как правило, протекает изолированно, но в некоторых родословных у больных описаны скелетные и неврологические симптомы. Молекулярно-генетическое исследование необходимо для подтверждения диагноза.

В 95% случаев в матричной ДНК выявляются три мутации в 11778, 3460 и 14484 положениях.

Восстановление зрения вариабельно и зависит от выявленной мутации. Наилучший прогноз характерен для 14484 мутации (50% больных), улучшение зрения отмечается менее чем у 5% больных с 11778 мутацией, а частота выздоровления у больных с 15275 мутацией составляет 25% . Больные моложе 15 лет имеют лучший прогноз независимо от типа мутации. Эффективного лечения этого заболевания не существует.

67. Человек как специфический объект генетического анализа. Методы изучения наследственности человека. Кариотипирование и экспресс-анализ полового хроматина в медицине.

Насле́дственность — способность организмов передавать свои признаки и особенности развития потомству. Благодаря этой способности все живые существа (растения, грибы, или бактерии) сохраняют в своих потомках характерные черты вида. Такая преемственность наследственных свойств обеспечивается передачей их генетической информации. Носителями наследственной информации у организмов являются гены.
1   ...   5   6   7   8   9   10   11   12   13


написать администратору сайта