Главная страница
Навигация по странице:

  • Экспрессия генов

  • Регуляция этапов транскрипции и трансляции

  • 23.Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов, промотора, оператора, регулятора, факторов транскрипции (индукторов).

  • Факторы транскрипции

  • 24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.

  • Серповидноклеточная анемия

  • 25.Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека ( HLA ). Его значение в трансплантологии.

  • Хромосомный уровень

  • Триплетный

  • 1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины


    Скачать 0.75 Mb.
    Название1. Определение биологии как науки. Связь биологии с другими науками. Значение биологии для медицины
    Дата15.01.2019
    Размер0.75 Mb.
    Формат файлаdocx
    Имя файлаBiologia_ekzamen.docx
    ТипДокументы
    #63790
    страница3 из 21
    1   2   3   4   5   6   7   8   9   ...   21

    22. Этапы экспрессии генов в процессе биосинтеза белка. Альтернативный сплайсинг. Регуляция этапов транскрипции и трансляции. Роль микро-РНК. Геном человека.

    Экспрессия генов — это процесс, в котором наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется РНК или белок.

    Этап первый — транскрипция.

    Вдоль ДНК «бежит» иРНК (мРНК) и строит себя по принципу комплементарности.

    Дальше включается процесс трансляции. Рибосома, распознает последовательность аминокислот записанных на информационной РНК и синтезирует белки или РНК.

    Экспрессия генов обеспечивает поддержание структуры и функции клетки, что является основой для дифференциации клеток, морфогенеза, а также универсальной адаптации любого организма к условиям существования. Регуляция генов может также служить в качестве субстрата для эволюционных изменений, поскольку контроль над временем, местом и интенсивностью экспрессии генов может иметь огромное влияние на функции (действие) генов в клетке или в многоклеточном организме. 

    В генетике, влияние экспрессии генов рассматривается на фундаментальном уровне, ведь во время этого процесса под действием генотипа формируется фенотип. Генетический код хранится в ДНК в виде последовательности нуклеотидов, "которая интерпретируется" при экспрессии генов, а свойства продуктов экспрессии генов приводит к формированию фенотипа организма.

    Сплайсинг – удаление из молекулы РНК интронов (участков РНК, которые практичеси не несут генетической информации) и соединение оставшихся участков, несущих генетическую информацию , экзонов, в одну молекулу.

    В ходе созревания РНК интроны вырезаются, а экзоны — смысловые части — сшиваются, и получается зрелая матричная РНК определенного белка. Этот процесс называется сплайсингом. Однако есть тут одна хитрость. Сшиваться могут не все экзоны, и в разных условиях разные экзоны отбрасываются вместе с интронами. В результате этой сшивки получаются разные варианты, или изоформы, того или иного белка, а весь процесс носит название альтернативного сплайсинга. Таким образом, из одного гена может быть в конечном итоге получено несколько разных белков.

    Альтернативный сплайсинг, во время которого происходит рекомбинация экзонов — главный источник генетического многообразия у эукариот. 

    Регуляция этапов транскрипции и трансляции:

    В 1961 г. французские ученые Ф. Жакоб , А. Львов и Ж. Моно опубликовали результаты своих исследований по регуляции белкового синтеза у бактерий. За эту работу, признанную теперь классической, они были удостоены Нобелевской премии. Известно, что пока в питательную среду, в которой живут бактерии, не добавлен сахар, в клетке нет ферментов, необходимых для его расщепления. Бактерия не тратит энергию АТФ на синтез белков, ненужных ей в данный момент. Однако через несколько секунд после добавления сахара в клетке синтезируются все ферменты, последовательно превращающие его в продукт, необходимый для жизнедеятельности бактерии. Вместо сахара может быть другое соединение, появление которого в клетке "включает" синтез ферментов, расщепляющих его до конечного продукта. Соединения, которые в клетке подвергаются действию ферментов, называются субстратами.

    Ферменты, участвующие в одной цепи превращения субстрата в конечный продукт, закодированы в расположенных друг за другом генах одного оперона. Между этими генами, называемыми структурными (так как они определяют структуру ферментов), и промотором - посадочной площадкой для РНК-полимеразы есть особый участок ДНК - оператор . Он так называется потому, что именно с него начинается операция - синтез и-РНК. С оператором взаимодействует специальный белок репрессор(подавитель). Пока репрессор сидит на операторе, РНК-полимераза не может сдвинуться с места и начать синтез и-РНК (рис. 50 ). Когда в клетку попадает субстрат А, для расщепления которого нужны ферменты Ф1, Ф2, ФЗ, закодированные в структурных генах, одна из молекул субстрата связывается с репрессором, мешающим считывать информацию об этих ферментах. Репрессор, связанный молекулой субстрата, теряет способность взаимодействовать с оператором, отходит от него и освобождает дорогу РНК-полимеразе . РНК-полимераза синтезирует иРНК,  которая обеспечивает на рибосомах синтез ферментов, расщепляющих субстрат А (рис. 51 ). Как только последняя молекула субстрата А будет преобразована в конечный продукт, освобожденный репрессор возвратится на оператор и закроет путь полимеразе. Транскрипция и трансляция прекращаются. И-РНК и ферменты, выполнив функции, расщепляются соответственно до нуклеотидов и аминокислот.

    Другой оперон, содержащий группу генов, в которых закодированы ферменты для расщепления субстрата Б, остается закрытым до поступления в клетку молекул этого субстрата. В ряде случаев конечные продукты одних цепей превращений могут служить субстратами для новых биохимических конвейеров. Не каждый оперон имеет несколько структурных генов, есть опероны, содержащие лишь один ген. Количество структурных генов в опероне зависит от сложности биохимических превращений того или иного субстрата.

    http://medbiol.ru/medbiol/biology_sk/images/050.jpg рис 50

    http://medbiol.ru/medbiol/biology_sk/images/051.jpg рис 51

    П - промотор, О - оператор, СГ - структурные гены, Реп - белок-репрессор, Ф1, Ф2, Ф3 – ферменты

    Структурные гены- гены, в которых записана наследственная информация о структуре белков.

    Регуляторные гены – регулируют работу структурных генов.

    Субстрат – соединение, которое в клетке подвергается действию ферментов.

    Промотор – посадочная площадка для РНК-полимеразы.

    Оператор – особый участок ДНК, с которого начинается операция – синтез иРНК.

    Оперон – оператор и управляемая им группа структурных генов.

    Репрессор – особый белок, который взаимодействует с оператором и выключает работу структурного гена.

    Синтезируются те белки, которые в данный момент необходимы клетке. Как только последняя молекула субстрата будет преобразована в конечный продукт, освобожденный репрессор возвратится на оператор и закроет путь РНК-полимеразе. Транскрипция и трансляция прекратятся. иРНК и белки-ферменты, выполнившие свои функции, расщепляются до нуклеотидов и аминокислот.

    Ми́кроРНК — малые некодирующие молекулы РНК длиной 18—25 нуклеотидов (в среднем 22), обнаруженные у растений, животных и некоторых вирусов, принимающие участие в транскрипционной  регуляции экспрессии генов.

    МикроРНК участвуют в подавлении активности генов: они комплементарно спариваются с участками мРНК и ингибируют их трансляцию. Кроме того, комплексы микроРНК с мРНК часто быстро расщепляются клеткой. 

    Геном человека- международный проект, начатый в 1988 г.

    Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека.

     К 1998 г. установлены последовательности нуклеотидов в 30 261 гене человека, т.е. расшифрована примерно половина генетической информация человека.

    23.Регуляция работы генов. Значение гистонов. Структура оперона. Роль структурных генов, промотора, оператора, регулятора, факторов транскрипции (индукторов).

    К регулированию деятельности генов имеют отношения белки-гистоны, входящие в состав хромосом. Эти белки покрывают значительную часть молекул ДНК. Синтез иРНК происходит только в тех участках ДНК, которые не закрыты гистонами.

    К промотору присоединяется РНК-полимераза. Активатор и оператор регулируют активность гена. Так к активатору присоединяется белок, способный облегчить присоединение фермента к промотору или, наоборот, затормозить этот процесс. На операторе также осаждается белок, который может блокировать работу РНК-полимеразы. + Слюсарев 89 стр

    Гистоны — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в регуляции таких ядерных процессов, как транскрипция, репликация и репарация (Репарация - функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. ).

    Гистоны входят в состав хромосом, покрывают часть молекул ДНК. Синтез РНК происходит только в тех участках ДНК, которые не закрыты гистонами.

    Оперон

    участок ДНК, транскрипция которого осуществляется на одну молекулу информационной РНК под контролем одного специального белка-регулятора. Концепция оперона была предложена в 1961 г. Ф. Жакобом и Ж. Мано для объяснения механизма «включения» и «выключения» генов в зависимости от потребности клетки прокариотического организма в веществах, синтез которых контролируют эти гены. Дальнейшие эксперименты позволили дополнить эту концепцию, а также подтвердили, что оперонная регуляция (т. е. регуляция на уровне транскрипции) является основным механизмом регуляции активности генов у прокариот и ряда вирусов.

    В состав оперона входят структурные гены и регуляторные элементы (не путать с геном-регулятором). Структурные гены кодируют белки, осуществляющие последовательно этапы биосинтеза какого-либо вещества.

    Регуляторными элементами являются следующие:

    — промотор — Промотор – посадочная площадка для РНК-полимеразы

    -  оператор - особый участок ДНК, с которого начинается операция – синтез иРНК.

    - терминатор - участок в конце оперона, сигнализирующий о прекращении транскрипции.

    Структурные гены- гены, в которых записана наследственная информация о структуре белков.

    Промотор – посадочная площадка для РНК-полимеразы.

    Оператор – особый участок ДНК, с которого начинается операция – синтез иРНК.

    Факторы транскрипции (транскрипционные факторы) — белки́, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК

    24.Мультимерная организация белка на примере гемоглобина человека. Серповидно-клеточная анемия.

    Гемоглобин —специфический белок эритроцитов, легко выделяемый из организма без применения трудоемких биохимических методик. Молекула гемоглобина состоит из четырех полипептидных цепей (двух α- и двух β-цепей), каждая из которых соединена с небелковым компонентом — гемом, содержащим железо.

    Серповидноклеточная анемия — это наследственная гемоглобинопатия, связанная с таким нарушением строения белка гемоглобина, при котором он приобретает особое кристаллическое строение — так называемый гемоглобин S. Эритроциты, несущие гемоглобин S вместо нормального гемоглобина А, под микроскопом имеют характерную серпообразную форму (форму серпа), за что эта форма гемоглобинопатии и получила название серповидноклеточной анемии.

    25.Основы генетической уникальности индивидуума (иммуногенетика). Генетический комплекс гистосовместимости человека (HLA). Его значение в трансплантологии.

    Иммуногенетика - раздел иммунологии, занятый изучением четырех основных проблем:

    1) генетики гистосовместимости ;

    2) генетического контроля структуры иммуноглобулинов и других иммунологически значимых молекул;

    3) генетического контроля силы иммунного реагирования и

    4) генетики антигенов .
    Иммуногенетика- раздел иммунологии, изучающий генетич. обусловленность факторов иммунитета, внутривидовое разнообразие и наследование тканевых антигенов, генетич. и популяц. аспекты взаимоотношений макро- и микроорганизма и тканевую несовместимость.

    Начало И. положили работы Э. Дунгерна и Л. Хиршфельда, открывших наследование групповых антигенов крови (1910). Термин «И.» предложили М. Ирвин и Л. Коле (1936).

    Человеческие лейкоцитарные антигены, Система генов тканевой совместимости человека (англ. HLA, Human Leucocyte Antigens) — группа антигенов гистосовместимости, главный комплекс гистосовместимости (далее MHC) у людей. Представлены более, чем 150 антигенами. Локус, расположенный на 6-й хромосоме содержит большое количество генов, связанных с иммунной системой человека. Этими генами кодируются в том числе и антигенпредставляющие белки, расположенные на поверхности клетки. Гены HLA являются человеческой версией генов MHC многих позвоночных (на них проводилось множество исследований MHC генов).

    Роли HLA важны в защите от болезней, могут быть причиной отторжения органов после пересадки, могут защищать от рака или увеличивать его вероятность (если разрегулированы из-за частых инфекций. Они могут влиять на развитие аутоиммунных заболеваний (например, сахарный диабет 1-го типа, целиакию).

    26.Структурно-функциональные уровни организации наследственного материала у прокариот и эукариот: генный, хромосомный, геномный. Ген и его свойства. Триплетный код. Внутриклеточная регуляция (гипотеза Жакоба и Моно).

    Генный уровень:

    Изучение этого уровня связано с функциями и строением нуклеиновых кислот.

    Известны две группы нуклеиновых кислот: РНК и ДНК.

    ДНК находится в ядре и входит в состав хроматина, а также митохондрии, центросомы, пластиды, а РНК - в ядрышках, матриксе цитоплазмы, рибосомах.

    Носителем наследственной информации в клетке является ДНК, а РНК - служит для передачи и реализации генетической информации у про- и эукариот. С помощью и-РНК происходит процесс перевода последовательности нуклеотидов ДНК в полипептид.

    У некоторых организмов, кроме ДНК, носителем наследственной информации может быть РНК, например, у вирусов табачной мозаики, полиомиелита, СПИДа.

    Хромосомный уровень организации наследственного материала характеризуется особенностями морфологии и функций хромосом.

    Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни.

    Ген – участок молекулы ДНК, определяющий порядок аминокислот в молекуле белка.

    Свойства гена:

    1 дискретность действия- развитие различных признаков контролируется разными генами.

    2 стабильность - передается в ряду поколений в неизменном виде.

    3 специфичность - каждый из генов обуславливает развитие определенного признака.

    4 плейотропия - способность генов обеспечивать развитие одновременно нескольких признаков

    Ген (от греч. genos — происхождение) представляет собой мельчайшую единицу наследственности, которая обеспечивает преемственность в потомстве того или иного элементарного признака организма. У высших организмов ген входит в состав особых нитевидных образований — хромосом, находящихся внутри ядра клетки. Совокупность всех генов организма составляет его геном. В геноме человека насчитывается около ста тысяч генов. По своим химическим характеристикам ген представляет собой участок молекулы ДНК (у некоторых вирусов — РНК), в определенной структуре которого закодирована та или иная наследственная информация. Каждый ген содержит некоторый рецепт, который обеспечивает соответствующий синтез определенного белка, и таким образом совокупность генов управляет всеми химическими реакциями организма и определяет все его признаки. Важнейшим свойством гена является сочетание высокой устойчивости, неизменяемости в ряду поколений со способностью к наследуемым изменениям —мутациям, которые являются источником изменчивости организмов и основой для действия естественного отбора.

    Триплетный код. — генетический код, в котором каждая аминокислота полипептидной цепи определяется группой из трех нуклеотидов ДНК.

    Общую схему строения генетического аппарата прокариот предложили фр. Жакоб и Моно. Долго не могли объяснить факт: бактерии начинают синтезировать определенный фермент тогда, когда в среде имеется вещество, расщепляемое данным ферментом (субстрат реакции). Если в среде присутствует лактоза и глюкоза, то вначале разлагается глюкоза, т.к. у бактерий этот фермент есть постоянно. Лишь потом начинается синтезироваться фермент, разлагающий лактозу.

    Схема генетического контроля белкового синтеза получила название гипотезы оперона. По этой схеме гены функционально неодинаковы: одни из них (структурные гены) содержат информацию о расположении аминокислот в молекуле белка-фермента, другие (гены-регуляторы) выполняют регуляторные функции, оказывающие влияние на активность структурных генов.


    1   2   3   4   5   6   7   8   9   ...   21


    написать администратору сайта