Главная страница
Навигация по странице:

  • Реализация наследственной информации и становление фенотипа.

  • Критические периоды развития.

  • Тератогенные факторы среды.

  • Ответы к экзаменационным ворпосам. 1 Предмет биологии. Биология


    Скачать 1.41 Mb.
    Название1 Предмет биологии. Биология
    АнкорОтветы к экзаменационным ворпосам.doc
    Дата16.01.2018
    Размер1.41 Mb.
    Формат файлаdoc
    Имя файлаОтветы к экзаменационным ворпосам.doc
    ТипДокументы
    #14267
    страница14 из 27
    1   ...   10   11   12   13   14   15   16   17   ...   27

    Взаимоотношение материнского организма и плода. У млекопитающих и человека яйце­клетка бедна желтком, поэтому про­визорные приспособления развиваю­щегося организма имеют свои особен­ности. Желточный мешок закладывает­ся на ранних этапах эмбриогенеза, но не развивается, а постепенно редуци­руется, расслаивается. Аллантоис так­же не развит. Зачаток его входит в со­став нового специфического провизор­ного органа — пупочного канатика.
    Функцию наружной зародышевой обо­лочки выполняет хорион, или вор­синчатая оболочка, названная так вследствие развития на ее поверхно­сти большого числа выростов, ворси­нок. Ворсинки хориона врастают в сли­зистую оболочку матки — специаль­ного органа материнского организма, присущего только млекопитающим. Место наибольшего разветвления вор­синок хориона и наиболее тесного кон­такта их со слизистой оболочкой матки носит название детского места, или плаценты.

    Связь тела зародыша с плацентой осуществляется через пуповину или пупочный канатик, содержащий крове­носные сосуды. Кровеносные капилля­ры тела зародыша разветвляются в вор­синках хориона. Так устанавливается плацентарное кровообращение. Кровь матери не смешивается с кровью пло­да; она омывает ворсинки хориона, но никогда не проникает в капилляры плода. Через плаценту плод снабжа­ется питательными веществами, кис­лородом и освобождается от продуктов жизнедеятельности. При этом важная роль принадлежит эпителиальным клеткам, образующим хорион и его ворсинки. Вместе с клетками стенок сосудов эпителий хориона образует специфический клеточный барьер; мик­роорганизмы и ряд веществ из кровото­ка матери в норме не поступают в кро­воток плода. Нарушение плацентар­ного барьера, как правило, ведет к расстройству нормального развития плода, к патологии беременности. Пла­цента не является барьером для ряда лекарственных веществ, в том числе наркотиков, производственных и пи­щевых ядов, чужеродных белков и антител. Изучение биологических осо­бенностей связи организма плода и матери у высших млекопитающих, а следовательно, и у человека, име­ет большое значение и лежит в ос­нове правильной организации меди­цинской службы вобласти охраны материнства.

    Реализация наследственной информации и становление фенотипа. Уже упоминалось, что у земноводных и иг­локожих каждый из двух изолирован­ных бластомеров может развиться в полноценный организм. Следователь­но, на этой стадии они тотипотентны, т. е. равнонаследственны. Было уста­новлено, что у тритона сохраняется такая тотипотентность до стадии 16 бла­стомеров, у кроликов — до стадии 4 бластомеров. О существовании подоб­ной тотипотентности в бластомерах че­ловека говорит случай рождения двух, четырех и даже семи однозиготных близнецов.

    При дальнейшем развитии зародыше­вые клетки, начиная со стадии бласту­лы, теряют тотипотентность. Бласто­меры уже неоднородны. Начинается дифференцировка. Под дифференциров-кой понимается формирование разно­образных структур и частей тела (а за­тем и органов) из относительно одно­родного материала зародыша.

    Но оказалось, что, несмотря на утра­ту тотипотентности и дифференциров-ку, клетки полностью сохраняют гене­тическую информацию. Это вытекает из серии опытов, проведенных в 1964— 1966 гг. английским эмбриологом Д. Гердоном. Он пересаживал ядра из клеток кожи и кишок головастика в яйцеклетки, лишенные ядер. Многие из таких яйцеклеток развились в нор­мальных головастиков (рис. 6.1).

    Таким образом, оказалось, что лю­бая соматическая клетка представляет собой интегрированную часть в орга­низме, выполняет узко специализированные функции, но в то же время не­сет в себе генотип целого организма.
    Для того чтобы происходил синтез иРНК, молекула ДНК должна быть раскрученной. Это раскручивание мо­жет иметь характер волнообразно дви­жущейся петли, последовательно вклю­чающей в активное состояние разные локусы ДНК, но не приводящей к рас­кручиванию всей молекулы. Возможно одновременное раскручивание в ре­зультате возникновения нескольких волн, следующих друг на другом с оп­ределенным разрывом.

    К регулированию деятельности генов имеют отношение белки-гистоны, вхо­дящие в состав хромосом, Эти белки покрывают значительную часть молекул ДНК. Синтез иРНК происходит только в тех участках ДНК, которые не закрыты гистонами. Вещества, по­ступающие из цитоплазмы в ядро, освобождают определенные участки ДНК от гистонов. Установлено дей­ствие гормонов на хромосомный аппа­рат клетки (а следовательно, и на ее генотип). Например, экдизон — гор­мон линьки и метаморфоза насеко­мых — вызывает образование пуффов на хромосомах.

    Таким образом, белки-ферменты об­разуются в результате деятельности ге­нов, но последние регулируются бел-ками-гистонами и гормонами. Процесс онтогенеза представляет собой цепь реакций, регулирующихся по принци­пу обратной связи. В этой цепи на­копление определенных веществ, обра­зующихся в результате деятельности генов, может либо тормозить, либо стимулировать функцию генов.

    Многочисленные факты привели к убеждению, что гены действуют через кодируемые ими ферменты. Такая точ­ка зрения, получившая широкое рас­пространение, в сжатом виде сформули­рована В теории: один ген один фер­мент один признак. В настоящее время эта формулировка может быть несколько более детализирована: ген (ДНК) — иРНК — белок (фермент)— признак. Точнее следует сказать, что на молекулярном уровне реализация признака претерпевает ряд этапов: транскрипция — иРНК — процес-синг — тРНК — трансляция — обра­зование белков и их участие в формиро­вании признака. На каждом из этих этапов возможно влияние других ге­нов. Именно этим объясняется суще­ствование генов-модификаторов, эпистаза, генокопий.

    (33) Эмбриональная индукция. Большое значение в упорядочении хода эмбриогенеза принадлежит эмбриональной индукции. Начало принципиальному изучению этого явления положил опыт Г. Шпемана и Г. Мангольд, результаты которого были опубликованы в 1924 г. В нем дорсальная губа бластопора, подлежащая в нормальных условиях эктодерме, развивающейся в структуры нервной системы, из зародыша гребенча­того (непигментированного) тритона на стадии ранней гаструлы вырезалась и пересаживалась под эктодерму брюшной стороны, дающую в дальнейшем эпидермис кожи зародыша примерно той же стадии развития обыкновенного (пигментированного) тритона (рис. 88). В итоге на брюшной стороне зародыша- реципиента возника­ли сначала нервная трубка и другие компоненты комплекса осевых органов — хорда, сомиты, а затем формировался дополнительный зародыш. Наблюдения за распределением пигментированных и не­пигментированных клеток показали, что ткани дополнительного зародыша формируются почти исключительно из клеточного материа­ла реципиента.

    Приведенные данные убедительно доказывают, что в ходе эмбриогенеза некоторые части зародыша выполняют роль индукторов или организаторов (по терминологии Г. Шпемана), намечающих пути развития других частей. Явление эмбриональной индукции состоит в побуждении к развитию в опреде­ленном направлении одних структур зародыша в результате воздей­ствия на них других структур, возникающих на более ранних стадиях.

    Отдельные примеры индукционных воздействий ограниченного характера, например образование хрусталика из эктодермы под действием зачатка глаза (рис. 89), были известны и ранее. Значение результатов опыта Г. Шпемана и Г. Мангольд состоит в установлении факта первичной эмбриональной индукции, т. е. первого шага в цепи последовательных (вторичных, тре­тичных) индукционных процессов в дальнейшем развитии.

    Дорсальная губа бластопора, представляющая по своим потенциям хордомезодермальный зачаток, является первичным индуктором и ор­ганизатором у амфибий. У рыб ему соответствует дорсальный край бластодиска, у птиц — первичный узелок.

    Зачаток бластопора у амфибий возникает в области серого серпа. Если небольшой участок кортикального слоя цитоплазмы яйцеклетки лягушки из области названной структуры пересадить на брюшную сторону другого зародыша, то у последнего индуцируется дополни­тельная нервная система. Можно предположить, что клеточный материал дорсальной губы бластопора наследует свойства первичного организатора, которые были каким-то образом запрограммированы еще на уровне яйца.

    Многочисленными исследованиями, выполненными в 20—30-х го­дах текущего столетия, показано, что в условиях эксперимента индукцию развития эктодермы в направлении нервной системы вызы­вают многие факторы — вытяжки из разных органов беспозвоночных и позвоночных животных, тканей растений, неорганические вещества.

    Наряду с этим было установлено, что существуют «специфические индукторы», т. е. вещества, оказывающие индуцирующее действие в ничтожных концентрациях, и различающиеся по конечному результату своего действия. Так, экстракт из печени млекопитающих индуцирует главным образом мозговые структуры, а из костного мозга —
    мезодермальные. При совместном воздействии обоих индукторов формиро­вался зародыш почти нормального вида. В тканях куриных зародышей высокоактивные индукторы относятся к классу белков или нуклеопротеинов.

    В развитии многих зачатков выявляются цепи по­следовательных индукций. Так, описана индукция глазным бокалом хрусталика, хрусталиком и даже взрослым глазом роговицы. Продолговатый мозг индуцирует развитие слухового пузырька, а последний — хрящевую капсулу. В отличие от первичной эмбриональной индукции, результатом которой служит образование дополнительного зародыша, примеры, описанные выше, относятся к тканевому и органному уровню структурной организации. В основе таких межорганных и межтканевых индукций лежат, по-видимому, не химические, а контактные воздействия одних клеток на другие.

    Важным обстоятельством служит то, что в нормальном развитии индуктор оказывает соответствующее действие лишь в отношении зачатков, которые характеризуются восприимчивостью. Способность эмбрионального зачатка к восприятию индукционного стимула называ­ется компетенцией. Таким образом, индукционные процессы в эмбриогенезе происходят благодаря приобретению одними частями свойств индукторов, а другими — свойства компетентности.

    В парах элементов «индуктор — компетентный зачаток» содержа­ние изменений, провоцируемых индуктором, зависит от внутренних потенций зачатка. Так, зачаток бедра задней конечности цыпленка пересаживали под эпителий зачатка конечного (дистального) отдела

    Из трансплантата под влиянием эпителия, в норме индуцирующего конечный отдел крыла, из презуптивного материала бедра сформирова­лись дистальные структуры, из ноги — стопа, фаланги пальцев.

    Современные исследования показали, что действие индуктора не воспринимается одиночными клетками, причем клетки в трехмерном скоплении изменяются быстрее, чем будучи распластаны тонким слоем. Чем больше масса индуцируемого зачатка, тем активнее в нем происходит дифференцировка частей.

    Такие характеристики эмбриогенеза, как тотипотентность частей зародыша на достаточно ранних стадиях, прогрессивное ограничение путей развития зачатков, явление нарастающей дифференциации, о которых шла речь выше, хорошо согласуются с наличием цепей индукционных процессов. При этом закономерная смена индукторов и состояний компетентности могут служить инструментом детерминации последовательных этапов развития: от значительных (например, формирование комплекса осевых органов) до ограниченных объе­мом органа или клеточной группы.

    Наблюдения показывают, что зачаток почти любого органа проходит в своем развитии две фазы. В фазе зависимой дифференцировки его судьба во многом зависит от действия индукторов и внешнего окружения. С определенного момента зачаток вступает в фазу независимой дифференцировки и осуществляет закономерный цикл преобразований даже при изменении внешних условий. Трансплантация зачатка в нетипичное окружение в 1 -и фазе приведет к трансдифференцировке, во 2-й — не вызовет изменения пути развития.
    Представления о смене организаторов и состояния компетенции зачатков как факторах детерминации последовательных этапов разви­тия структур не противоречит положению о том, что на любой стадии организм является целостностью, а не мозаикой органов и частей. Целостность обусловливается системой связей между отдельными элементами зародыша, характеристики которой закономерно изменя­ются. Лишь условно можно говорить об одних частях зародыша как об индукторах, а о других — как о реагирующих элементах. В процессе развития, включаясь в разные системы связей, «индукторы и реакторы» (по терминологии И. И. Шмальгаузена) постоянно меняются ролями. Факторы, обусловливающие закономерный характер итога развития в целом и на отдельных этапах, возникают по мере дифференцировки зародыша благодаря взаимодействию результатов этой дифференци­ровки.

    Критические периоды развития. Экс­периментальное изучение развития жи­вотных привело к представлению о так называемых критических перио­дах. Этим термином обозначают перио­ды, когда зародыш наиболее чувстви­телен к повреждению разнообразными факторами, которые могут нарушить нормальное развитие. Иными словами, это периоды наименьшей резистент-ности (устойчивости) зародышей к фак­торам внешней среды.

    В отношении развития человека П. Г. Светлов подчеркивает большое значение следующих критических пе­риодов: имплантации (6—7-е сутки после зачатия), плацентации (конец 2-й недели беременности) и перинатального (роды). С критическим периодом в организме новорожденного связаны резкое изменение условий существова­ния и перестройка деятельности всех систем организма (изменяется характер кровообращения, газообмена, питания и т. д.). Кроме того, отмечены кри­тические периоды развития отдельных органов в различные сроки жизни человеческого эмбриона. Изучение кри­тических периодов в эмбриогенезе показывает необходимость охраны ма­теринского организма от вредных фак­торов, особенно в самые первые неде­ли беременности. Условия существо­вания зародыша в это время отра­жаются на его эмбриональном раз­витии, а следовательно, на всей даль­нейшей жизни.

    Есть основания полагать, что разные гены начинают функционировать на различных стадиях онтогенеза, совпа­дающих с критическими периодами. Та­кой вывод напрашивается на основании того, что под влиянием повреждаю­щих факторов физической и химиче­ской природы возникают нарушения нормального развития, напоминающие собой мутации. Советский исследова­тель И. А. Рапопорт действием разнообразных химических веществ на ли­чинки дрозофилы в различные периоды развития добился модификационных изменений, имитирующих мутации (фе-нокопии). Так, в опытах с солями се­ребра у дрозофилы получен высокий процент особей с желтым телом, та­ких же, как при соответствующей мутации.

    В опытах на лабораторных млеко­питающих установлено, что соедине­ние бета-аминопропионитил вызывает в плодах такое же нарушение образо­вания коллагена в коже, как и при наследственной болезни дерматоспари-ксисе. При этом кожа становится хруп­кой, неэластичной, легко повреждае­мой.

    Не исключена вероятность, что фено-копии возникают в результате того, что повреждение препятствует реали­зации соответствующего гена. Изуче­ние фенокопий перспективно для вы­яснения реализации действия генов в онтогенезе.
    Тератогенные факторы среды. Фак­торы среды, способные вызвать нару­шение развития, уродства, называ­ются тератогенами (гр. teras — чудо­вище, урод). В разные периоды раз­вития эмбрион оказывается чувстви­тельным к тем или другим физиче­ским факторам и химическим вещест­вам, попадающим в организм матери. Так, прием внутрь хинина, алкоголя, отравление токсическими веществами, недостаток кислорода, могут нарушить развитие органов и, в первую очередь, нервной системы плода. Иногда после воздействия названных факторов ро­ждаются микроцефалы (гр. mikros — малый, kehpale — голова); иногда у зародыша полностью отсутствует го­ловной мозг. Подобные уродства полу­чены экспериментально у животных, подвергшихся аналогичным воздей­ствиям.

    Недостаток витаминов группы В мо­жет стать причиной ряда морфологи­ческих уродств, в том числе во внут­ренних органах (сердце, печени). Тера-тогены могут быть причиной не только морфологических, но и функциональ­ных аномалий. Так, дозы гидрокснмо-чевины, не вызывающие морфологиче­ских нарушений в центральной системе зародыша, приводят к функциональным расстройствам нервной системы.

    Причиной ряда уродств являются токсины паразитов. Отмечены, разно­образные пороки развития при забо­левании матери токсоплазмозом, возбу­дитель которого — одноклеточный ор­ганизм из типа простейших — токсо-плазма (Тохорlasma gondii).

    В настоящее время установлено, что и ряд других фармакологических ве­ществ в организме беременной женщи­ны вызывает гибель плода или урод­ства.

    Оказалось, что препарат хлоридин, применяемый для лечения .и профи­лактики малярии, токсоплазмоза и ря­да других протозойных болезней, об­ладает тератогенным действием (прав­да, не у всех видов животных). У крыс уродства, им вызываемые, различны.в зависимости от стадии развития,' на которой действовал препарат. Так, в период с 8-го по 11-й день развития у эмбрионов образуются мозговые гры­жи, после 12-го дня возникает микроце­фалия и аномалии в строении конеч­ностей.

    Конечно, тератогенным действием об­ладают лишь немногие лекарственные препараты, но такое действие неко­торых из них следует иметь в виду. При лечении беременных женщин не­обходимо подбирать безопасные в этом отношении препараты.

    Следует также учитывать, что мощ­ным повреждающим тератогенным фак­тором являются рентгеновские лучи и другие ионизирующие излучения. Это говорит о необходимости осторожного назначения беременным женщинам рентгеноскопических и флюорографи­ческих процедур.

    (34) Постнатальный онтогенез и его периоды. После рождения или выхода из яйцевых и зародышевых оболочек начинается постэмбриональный, или постнатальный, этап онтогенеза, в те­чение которого происходит дальней­шее развитие организма. У различных видов животных постнатальный этап жизни может продолжаться от не­скольких дней до десятков лет. Про­должительность индивидуальной жиз­ни — видовой признак, не зависящий от высоты организации.

    Постэмбриональный онтогенез чело­века можно разделить на следующие периоды: ювенильный (до полового созревания); зрелый (взрослое, поло­возрелое состояние); период старости, заканчивающийся естественной смер­тью.

    Ювенильный период(лат. juvenilis — юный) в зависимости от типа он­тогенеза протекает с прямым или не­прямым развитием. Первое из них характерно для организма с неличиноч­ным и внутриутробным типом разви­тия, второе — для организмов с личи­ночным типом развития.

    При прямом развитии вы­клюнувшиеся из яйцевых оболочек или новорожденные отличаются от взрос­лой формы преимущественно разме­рами, а также недоразвитием ряда органов и пропорциями тела. Сказан­ное относится не только к животным, но и к человеку. Рис. 7.1 наглядно иллюстрирует относительные размеры скелета, мышц, центральной нервной системы и внутренних органов ново­рожденного и взрослого человека.

    При непрямом развитии личинка претерпевает превращение, иначе называемое метаморфозом (гр. гле1атогрпо515, — превращение). Ли­чинка может резко отличаться от взрос­лой формы. У нее не только могут от­сутствовать или быть недоразвитыми органы, необходимые в половозрелом состоянии, но имеются многие времен­ные (провизорные) органы.

    Метаморфоз широко распространен у представителей различных типов жи­вотных. Он встречается не только у беспозвоночных животных (у кишеч­нополостных, плоских и круглых чер-вей, моллюсков, членистоногих), а и у хордовых, например земноводных. Развитие с превращением появилось как одно из приспособлений к условиям обитания и нередко связано с перехо­дом личиночных стадий из одной среды обитания в другую, например развитие насекомых и земноводных.

    Рост. Одной из наиболее характер­ных черт онтогенеза является увели­чение размеров развивающегося орга­низма, т. е. рост. Он связан с увеличе­нием количества клеток и с накопле­нием массы внеклеточных образова­ний. По характеру роста всех живот­ных можно разделить на две группы — с определенным и неопределенным рос­том.

    Неопределенный рост на­блюдается у моллюсков, ракообразных, рыб, земноводных, рептилий и дру­гих животных, не прекращающих рас­ти в течение всей жизни. Опреде­ленный рост свойствен орга­низмам, которые к определенному воз­расту перестают расти, например на­секомым, птицам, млекопитающим.

    Деление онтогенеза на возрастные периоды у детей отражает этапы созревания ряда систем: кост­ной, нервной, половой. Человек отли­чается от других видов, в том числе и от приматов, относительно более длин­ным периодом детства. Это имеет боль­шое значение, так как в этот период происходит не только физическое раз­витие организма, но и становление личности: в условиях коллектива осу­ществляются различные пути соци­ального наследования.

    Старость как этап онтогенеза.Старение—общебиоло­гическая закономерность,свойственная всем живым организмам. Старость — заключительный этап онтогенеза, воз-растной период, который наступает за зрелостью и характеризуется суще­ственными структурными, функцио­нальными и биохимическими измене­ниями в организме, ограничивающими его приспособительные возможности.
    Наука о старости — геронтология (гр. geron — старик) выясняет основ­ные закономерности старения, начи­ная от молекулярного и клеточного уровня до целостного организма. Ге­риатрия (гр. iatros — врач) изучает особенности развития, течения, лече­ния и предупреждения заболеваний у людей старческого возраста. В состав геронтологии входят также герогигие-на и геронтопсихология.

    Старение — процесс законо­мерного возникновения возрастных из­менений, которые начинаются задолго до старости и постепенно приводят к со­кращению приспособительных функцио­нальных возможностей организма. Ин­тенсивность старения, темп его разви­тия определяют продолжительность жизни. Признаки старения проявляют­ся на разных уровнях организации жи­вого организма: на молекулярном, кле­точном, тканевом, системном и орга-низменном.

    На организменном уровне изменения при старении выражаются прежде все­го во внешних признаках: изменяется осанка, форма тела, уменьшаются его размеры, появляется седина, кожа те­ряет эластичность, что приводит к об­разованию морщин. Наблюдается ос­лабление зрения и слуха, ухудшение памяти. Истончается компактное и губ­чатое вещество костной ткани, в частно­сти, это проявляется в изменении ли­цевого отдела черепа.

    На клеточном уровне можно отме­тить уменьшение содержания воды в протоплазме, изменение активного транспорта ионов, что сказывается на важнейших физиологических свойствах клетки, снижений ее электрического потенциала. В стареющих клетках воз­растает значение процесса гликолиза и относительно уменьшается актив­ность процесса окислительного фосфо-рилирования, в связи с этим в прото­плазме снижается содержание АТФ, креатинфосфата, особенно в сердце, мозге, скелетных мышцах. Изменяется структура эндоплазматической сети, не­редко она фрагментируется, отдель­ные ее участки неравномерно расши­рены.

    В клетках старого организма умень­шается активность ряда ферментов, снижается интенсивность синтеза ДНК и.РНК. Возникают ошибки присчиты­вании информационной РНК, вслед­ствие чего нарушается синтез необхо­димых белков. В цитоплазме накапли­ваются свободные радикалы. Вслед­ствие этого ассимиляция уже полно­стью не восполняет потерь, связанных с диссимиляцией. Снижается митоти-ческая активность клеток. Усиливает­ся процесс возникновения хромосомных аберраций в некоторых соматических клетках (анеуплоидии, склеивание хро­мосом).

    Смерть - завер­шающая фаза индивидуального суще­ствования каждого организма. Неиз­бежность смерти вытекает из противо­речивой сущности жизни.

    В процессе жизнедеятельности орга­низма непрерывно происходит отмира­ние клеток; так же непрерывно осу­ществляется восстановление отмираю­щих структур. При нарушении согласо­ванных процессов обмена в организме, а также между организмом как це­лым и средой наступает смерть. При­чиной смерти могут быть нарастаю­щие старческие изменения, патологи­ческий процесс или воздействия внеш­ней среды, насильственно обрывающие жизнь. Таким образом, смерть является завершающим этапом индивидуаль­ного развития.

    У высших животных и у человека различают смерть физиологическую (естественную), наступающую в результа­те старения, одряхления организма, и патологическую (преждевременную), вызванную болезненными состояниями организма, поражением жизненно важ­ных органов. Преждевременная смерть может быть и следствием несчастного случая.
    1   ...   10   11   12   13   14   15   16   17   ...   27


    написать администратору сайта