Главная страница
Навигация по странице:

  • 110.Проводниковый отдел слухового анализатора. Подкорковые центры слуха. Корковый отдел слухового анализатора. Слуховой анализатор и речь. Теории восприятия звука (Г. Гельмгольц, Г. Бекеши).

  • Особенности проводникового и коркового отделов слухового анализатора. Теории восприятия звука Проводниковый отдел

  • Функционирование вестибулярного аппарата

  • Влияние раздражений вестибулярной системы на другие функции организма

  • 116. Двигательный анализатор, его роль в восприятии и оценке положения тела в пространстве и формировании движений. Строение двигательного анализатора

  • 112. Тактильная чувствительность (анализатор): значение, виды. Классификация тактильных рецепторов, особенности их строения и функции. Проводящие пути и корковые центры.

  • Ответы к экз по физиологии. ОТВЕТЫ ФИЗО. 1. Предмет и задачи физиологии. Роль физиологии в диалектикоматериалистическом понимании сущности жизни. Области физиологии. Связь физиологии с другими науками


    Скачать 426.46 Kb.
    Название1. Предмет и задачи физиологии. Роль физиологии в диалектикоматериалистическом понимании сущности жизни. Области физиологии. Связь физиологии с другими науками
    АнкорОтветы к экз по физиологии
    Дата20.06.2020
    Размер426.46 Kb.
    Формат файлаdocx
    Имя файлаОТВЕТЫ ФИЗО.docx
    ТипДокументы
    #131660
    страница28 из 32
    1   ...   24   25   26   27   28   29   30   31   32

    Наружное ухо является звукоулавливающим аппаратом.

    Звуковые колебания улавливаются ушными раковинами (у животных они могут поворачиваться к источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами — так называемый бинауральный слух — имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

    Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки — молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, — перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения. Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде — при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

    Внутреннее ухо является звуковоспринимаюшцм аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2.5 спиральных витка. Улитковый канал разделен двумя перегородками основной мембраной и вестибулярной мембраной на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью — перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава — эндолимфой. В среднем канале расположен звуковоспринимаюший аппарат - Кортиев орган, в котором находятся механорецепторы звуковых колебаний — волосковые клетки.

    Физиологический механизм восприятия звука

    Восприятие звука основано на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и соответственно место наибольшего смещения основной мембраны: звуки высокой частоты дают наибольший эффект на начале основной мембраны, а низких частот -доходят до вершины улитки. Таким образом, при различных по частоте звуках возбуждаются разные волосковые клетки и разные нервные волокна, т. е. осуществляется пространственный код. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.

    Волоски рецепторных клеток погружены в покровную мембрану. При колебаниях основной мембраны начинают смещаться находящиеся на ней волосковые клетки и их волоски механически раздражаются покровной мембраной. В результате в волосковых рецепторах возникает процесс возбуждения, который по афферентным волокнам направляется к нейронам спирального узла улитки и далее в ЦНС.

    Различают костную и воздушную проводимость звука. В обычных условиях у человека преобладает воздушная проводимость — проведение звуковых колебаний через наружное и среднее ухо к рецепторам внутреннего уха. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке (например, при нырянии, подводном плавании).

    Человек обычно воспринимает звуки с частотой от 15 до 20000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.


    110.Проводниковый отдел слухового анализатора. Подкорковые центры слуха. Корковый отдел слухового анализатора. Слуховой анализатор и речь. Теории восприятия звука (Г. Гельмгольц, Г. Бекеши).
    Особенности проводникового и коркового отделов слухового анализатора. Теории восприятия звука

    Проводниковый отдел — первый нейрон проводникового отдела, находящийся в спиральном узле улитки, получает возбуждение от рецепторов внутреннего уха. Отсюда информация поступает по его волокнам, т. е. по слуховому нерву (входящему в 8 пар черепно-мозговых нервов) ко второму нейрону в продолговатом мозге. После перекреста часть волокон идет к третьему нейрону в заднем двухолмии среднего мозга, а часть к ядрам промежуточного мозга — внутреннему коленчатому телу;

    Корковый отдел — представлен четвертым нейроном, который находится в первичном (проекционном) слуховом поле и височной области коры больших полушарий и обеспечивает возникновение ощущения, а более сложная обработка звуковой информации происходит в расположенном рядом вторичном слуховом поле, отвечающем за формирование восприятия и опознание информации. Полученные сведения поступают в третичное поле нижнетеменной зоны, где интегрируются с другими формами информации.

    Теории слуха принято делить на две категории: 1) теории периферического анализатора и 2) теории центрального анализатора.

    Исходя из строения периферического слухового аппарата, Гельмгольц предложил свою резонансную теорию слуха, согласно которой отдельные части основной мембраны - «струны» колеблются при действии звуков определенной частоты. Чувствительные клетки кортиева органа воспринимают эти колебания и передают по нерву слуховым центрам. При наличии сложных звуков одновременно происходит колебание нескольких участков. Таким образом, восприятие звуков разных частот происходит в разных участках улитки, а именно, по аналогии с музыкальными инструментами, звуки высокой частоты вызывают колебания коротких волокон у основания улитки, а низкие звуки приводят в колебательные движения длинные волокна у верхушки улитки.

    Гельмгольц полагал, что центра слуха достигают уже дифференцированные

    раздражения, а корковые центры синтезируют полученные импульсы в слуховоеощущение.

    Теория слуха Бекеши - это теория, объясняющая первичный анализ звуков в улитке сдвигом столба пери — и эндолимфы и деформацией основной мембраны при колебаниях основания стремени, распространяющихся по направлению к верхушке улитки в виде бегущей волны.


    111.Вестибулярный анализатор. Отделы вестибулярного анализатора. Роль вестибулярного анализатора в восприятии и оценке положения тела в пространстве и при его перемещении. Особенности деятельности вестибулярного анализатора при ускорениях и в невесомости и его значение для космической медицины.

    Вестибулярная сенсорная система служит для анализа положения и движения тела в пространстве. Импульсы вестибулярного аппарата используются в организме для поддержания равновесия тела, для регуляции и сохранения позы, для пространственной организации движений человека.

    Общий план строения

    Вестибулярная сенсорная система состоит из следующих отделов:

    1. периферический отдел включает два образования, содержащие механорецепторы вестибулярной системы — преддверие (мешочек и маточка) и полукружные каналы;

    2. проводниковый отдел начинается от рецепторов волокнами биполярной клетки (первого нейрона) вестибулярного узла, расположенного в височной кости, другие отростки этих нейронов образуют вестибулярный нерв и вместе со слуховым нервом в составе 8-ой пары черепно-мозговых нервов входят в продолговатый мозг; в вестибулярных ядрах продолговатого мозга находятся вторые нейроны, импульсы от которых поступают к третьим нейронам в таламусе (промежуточный мозг);

    3. корковый отдел представляют четвертые нейроны, часть которых представлена в проекционном (первичном) поле вестибулярной системы в височной области коры, а другая часть — находится в непосредственной близости к пирамидным нейронам моторной области коры и в постцентральной извилине. Точная локализация коркового отдела вестибулярной сенсорной системы у человека в настоящее время не установлена.

    Функционирование вестибулярного аппарата

    Периферический отдел вестибулярной сенсорной системы находится во внутреннем ухе. Каналы и полости в височной кости образуют костный лабиринт вестибулярного аппарата, который частично заполнен перепончатым лабиринтом. Между костным и перепончатым лабиринтами находится жидкость — перилимфа, а внутри перепончатого лабиринта — эндолимфа.

    Аппарат преддверия предназначен для анализа действия силы тяжести при изменениях положения тела в пространстве и ускорений прямолинейного движения. Перепончатый лабиринт преддверия разделен на 2 полости — мешочек и маточку, содержащих отолитовые приборы. Механорецепторы отолитовых приборов представляют собой волосковые клетки. Они склеены студнеобразной массой, образующей поверх волосков отолитовую мембрану, в которой находятся кристаллы углекислого кальция — отолиты. В маточке отолитовая мембрана расположена в горизонтальной плоскости, а в мешочке она согнута и находится во фронтальной и сагиттальной плоскостях. При изменении положения головы и тела, а также при вертикальных или горизонтальных ускорениях отолитовые мембраны свободно перемащаются под действием силы тяжести во всех трех плоскостях, натягивая, сжимая или сгибая при этом волоски механорецепторов. Чем больше деформация волосков, тем выше частота афферентных импульсов в волокнах вестибулярного нерва.

    Аппарат полукружных каналов служит для анализа действия центробежной силы при вращательных движениях. Адекватным его раздражителем является угловое ускорение. Три дуги полукружных каналов распложены в трех взаимно перпендикулярных плоскостях: передняя — во фронтальной плоскости, боковая — в горизонтальной, задняя — в сагиттальной. В одном из концов каждого канала имеется расширение — ампула. Находящиеся в ней волоски чувствительных клеток склеены в гребешок — ампулярную купулу. Она представляет собой маятник, который может отклоняться в результате разности давления эндолимфы на противоположные поверхности купулы. При вращательных движениях в результате инерции эндолимфа отстает от движения костной части и оказывает давление на одну из поверхностей купулы. Отклонение купулы изгибает волоски рецепторных клеток и вызывает появление нервных импульсов в вестибулярном нерве. Наибольшие изменения в положении купулы происходят в том полукружном канале, положение которого соответствует плоскости вращения.

    В настоящее время показано, что вращения или наклоны в одну сторону увеличивают афферентную импульсацию, а в другую сторону — уменьшают ее. Это позволяет различать направление прямолинейного или вращательного движения.

    Влияние раздражений вестибулярной системы на другие функции организма

    Вестибулярная сенсорная система связана со многими центрами спинного и головного мозга и вызывает ряд вестибуло-соматических и вестибуло-вегетативных рефлексов.

    Вестибулярные раздражения вызывают установочные рефлексы изменения тонуса мышц, лифтные рефлексы, а также особые движения глаз, направленные насохранение изображения на сетчатке. — нистагм (движения глазных яблок со скоростью вращения, нов противоположном направлении, затем быстрое возвращение к исходеной позиции и новое противоположное вращение).

    Помимо основной анализаторной функции, важной для управления позой и движениями человека, вестибулярная сенсорная система оказывает разнообразные побочные влияния на многие функции организма, которые возникают в результате иррадиации возбуждения на другие нервные центры при низкой устойчивости Вестибулярного аппарата. Его раздражение приводит к снижению возбудимости зрительной и кожной сенсорных систем, ухудшению точности движений. Вестибулярные раздражения приводят к нарушениям координации движений и походки, изменениям частоты сердцебиения и артериального давления, увеличению времени двигательной реакции и снижению частоты движений, ухудшению чувства времени, изменению психических функций — внимания, оперативного мышления, кратковременной памяти, эмоциональных проявлений, В тяжелых случаях возникают головокружения, тошнота, рвота. Повышение устойчивости вестибулярной системы достигается в большей мере активными вращениями человека, чем пассивными.

    В условиях невесомости (когда у человека выключены вестибулярные влияния) возникает утрата представления о направлении гравитационной вертикали и пространственном положении тела. Теряются навыки ходьбы, бега. Ухудшается состояние нервной системы, возникает повышенная раздражительность, нестабильность настроения


    116. Двигательный анализатор, его роль в восприятии и оценке положения тела в пространстве и формировании движений.

    Строение двигательного анализатора

    Периферической частью ДА служат внутренние рецепторы органов движения — мышц, суставов и сухожилий. Они получают раздражения во время движения этих органов и, посылая импульсы в кору полушарий, сообщают о состоянии органов движения и о тех действиях, которые человек совершает с их помощью.

    Проводящий отде

    Возбуждение, возникшее в рецепторах двигательного анализатора по центростремительным нервам через задние (чувствительные) корешки проводится в спинной мозг. По восходящим проводящим путям оно передается в кору головного мозга.

    Центральная часть двигательного анализатора — это чувствительно-двигательная зона коры головного мозга, а именно передняя центральная извилина.

    Существование ДА можно доказать с помощью простого эксперимента. Закройте глаза и примите любую позу, а затем двигайте или ногой. Не видя этих движений, вы можете подробно рассказать о них. Существование двигательного анализатора было выяснено в наблюдениях за больными, у которых поражены восходящие пути спинного мозга. У таких людей движения при ходьбе некоординированные, так как нарушена проводящая часть двигательного анализатора.Значение ДАДА имеет важное значение для выполнения и разучивания движений. Он контролирует правильность и точность движений. Например, при сгибании руки в локтевом суставе сокращается двуглавая мышца плеча и растягивается трехглавая. Возбуждение, возникшее в рецепторах этих мышц, сигнализирует о том, что одна мышца сокращена, а другая растянута. Рецепторы трущихся поверхностей локтевого сустава и растянутых сухожилий информируют мозг об амплитуде и быстроте сгибания. Эта сигнализация не только дает возможность человеку ощутить данное движение, но и позволяет коре головного мозга проконтролировать точность и правильность его выполнения. Возбуждение от рецепторов двигательного анализатора поступает в чувствительно-двигательную зону коры. Оттуда идет поток импульсов к работающим мышцам, обеспечивающий своевременное исправление выполняемых движений.

    ДА играет ведущую роль при разучивании новых движений. Любые движения, которые приобретает человек в течение жизни, являются сложными условными двигательными рефлексами. Умение писать пером, играть на рояле и выполнять сложнейшие комбинации хореографических движений появляется в результате образования этих рефлексов. Они вырабатываются с помощью двигательного анализатора.

    В двигательной деятельности человека участвуют и подкорковые центры. Они регулируют мышечный тонус, уточняют координацию движений во время бега, ходьбы и танца, согласуют деятельность внутренних органов с двигательными рефлексами.

    112. Тактильная чувствительность (анализатор): значение, виды. Классификация тактильных рецепторов, особенности их строения и функции. Проводящие пути и корковые центры.

    Тактильный анализатор служит для анализа всех механических влияний, действующих на тело человека (давление, прикосновение, вибрация). Рецепторы, предназначенные для этого, содержатся в коже, в частности, в эпидермисе, дерме и частично в подкожной клетчатке. Концентрация тактильных рецепторов на различных участках тела неодинакова, поэтому чувствительность одних участков выше, например, кожи кончиков пальцев рук, других — ниже.

    Выделяют 3 основных вида рецепторов:

    1. Рецепторы давления, которые воспринимают силу механического воздействия (рецепторы силы).

    2. Рецепторы прикосновения, или датчики скорости - это тельца Мейсснера.

    3. Рецепторы вибрации - это датчики ускорения или датчики синусоидального изменения силы. Они реагируют лишь на вторую производную изменения силы - ускорение. Морфологически они представлены тельцами Паччини. Расположены в глубоких слоях дермы.

    118. Роль температурного анализатора в восприятии температуры внешней и внутренней среды организма. Особенности функционирования различных отделов температурного анализатора, его роль в поддержании температурного гомеостаза.

    Температурные рецепторы имеют важное значение для поддержания постоянной температуры тела. В средней полосе России колебание температуры окружающей среды между различными областями в течение одного дня может достигать 20-25°C , а на протяжении всего года — до 70°C (от 35°С ниже нуля — зимой, до 35°C выше нуля — летом). Без температурной адаптации человек не смог бы выжить. Поэтому очень важны быстрое и точное восприятие изменений температуры и соответствующая перестройка механизмов теплопродукции и теплоотдачи в зависимости от изменившихся условий. Именно в этом состоит функция температурных рецепторов. Полагают, что существуют две разновидности: одни воспринимают тепло, другие — холод. Рецепторы, воспринимающие холод, располагаются ближе к поверхности кожи, их количество больше, чем тепловых, которые и располагаются значительно глубже.Наиболее чувствительна к воздействию температурных раздражителей кожа лица и живота. Кожа ног по сравнению с кожей лица в два раза менее чувствительна к холоду и в четыре — к теплу. Температурные раздражители помогают ощущать структуру комбинации движений и скорость. Происходит это потому, что при быстром изменении положения частей тела или большой скорости передвижения возникает прохладный ветерок. Он воспринимается температурными рецепторами как изменение температуры кожи, а осязательными — как прикосновение воздуха.
    1   ...   24   25   26   27   28   29   30   31   32


    написать администратору сайта