Главная страница
Навигация по странице:

  • 1.1 Первые реальные принтеры

  • 1.5 Светодиодные принтеры

  • 1.6 Сублимационная печать

  • 1.9 Цепной (гусеничный) принтер

  • 1.13 История развития компьютера

  • ПРИНЦИП РАБОТЫ МАТРИЧНЫХ ПРИНТЕРОВ, СТРУЙНЫХ ПРИНТЕРОВ, ЛАЗЕРНЫХ ПРИНТЕРОВ. Отчет. 1 принцип работы матричных принтеров, струйных принтеров, лазерных принтеров


    Скачать 3.73 Mb.
    Название1 принцип работы матричных принтеров, струйных принтеров, лазерных принтеров
    АнкорПРИНЦИП РАБОТЫ МАТРИЧНЫХ ПРИНТЕРОВ, СТРУЙНЫХ ПРИНТЕРОВ, ЛАЗЕРНЫХ ПРИНТЕРОВ
    Дата05.01.2023
    Размер3.73 Mb.
    Формат файлаdocx
    Имя файлаОтчет.docx
    ТипРеферат
    #873625

    СОДЕРЖАНИЕ
    ВВЕДЕНИЕ……………………………………………………………………………

    1 ПРИНЦИП РАБОТЫ МАТРИЧНЫХ ПРИНТЕРОВ, СТРУЙНЫХ ПРИНТЕРОВ, ЛАЗЕРНЫХ ПРИНТЕРОВ…………………………………………..

    1.1 Первые реальные принтеры……………………………………………......

    1.2 Матричные принтеры………………………………………………………

    1.3 Струйная печать…………………………………………………………….

    1.4 Лазерные принтеры…………………………………………………….......

    1.5 Светодиодные принтеры……………………………………………….......

    1.6 Сублимационная печать…………………………………………………....

    1.7 Ромашковый принтер………………………………………………………

    1.8 Барабанный принтер………………………………………………………..

    1.9 Цепной (гусеничный) принтер……………………………………………..

    1.10 Фотонные принтеры………………………………………………………

    1.11 Термопринтеры……………………………………………………………

    1.12 Интернет-принтеры……………………………………………………….

    1.13 История развития компьютера……………………………………………

    ЗАКЛЮЧЕНИЕ………………………………………………………………..............

    СПИСОК ЛИТЕРАТУРЫ…………………………………………………….............

    ВВЕДЕНИЕ
    Сейчас вы практически не встретите документов, написанных от руки. Все и везде требуют документы с печатным шрифтом. Поскольку печатные машинки уже давно не актуальны, на замену им пришел персональный компьютер в качестве устройства набора текста и принтер в качестве устройства выводящего электронную информацию на бумагу.

    Принтер сейчас получил такое распространение, что цена самого простого не превышает 600 рублей. И если в фирмах закупкой данного оборудования занимаются специалисты, то принтер для личного пользования выбирает каждый сам, в результате чего никто не застрахован от покупки, которая может попортить немало нервов.

    В последнее время, в домашних условиях, все же чаще можно встретить не принтеры  в чистом виде, а многофункциональные устройства (МФУ), совмещающие в себе функции сканера, копира и принтера. Но выбирать эти устройства нужно именно отталкиваясь от их возможностей и технологий печати, так как характеристики сканера у них практически одинаковые. Именно поэтому в этом материале мы будем оперировать только понятием "принтер" или "печатающее устройство", но учтите, что вся нижеприведенная информация в равной мере применима и к МФУ.

    Принтер необходим для изготовления бумажных копий документов, подготовленных на компьютере. На заре вычислительной техники принтеры использовались как основное устройство вывода информации (мониторы в то время были еще несовершенны и мало распространены). Сейчас принтер можно увидеть в каждом офисе, у многих домашних пользователей имеется струйный принтер для печати фотографий и открыток, в кассах и банках на матричных принтерах печатаются билеты, документы и т. д.

    Что бы ни говорили о превосходстве электронных носителей информации над бумажными, похоже, век бумаги и печатного текста пройдет еще не скоро. Давно известно, что напечатанный текст воспринимается совершенно иначе, чем его «электронная» копия на экране монитора. И до того светлого дня, когда безбумажный стандарт информации восторжествует и нам больше не придется переводить на бумагу весело шумящие леса, мы будем печать. Именно поэтому целью моей работы является исследование основных типов принтеров.

    1 ПРИНЦИП РАБОТЫ МАТРИЧНЫХ ПРИНТЕРОВ, СТРУЙНЫХ ПРИНТЕРОВ, ЛАЗЕРНЫХ ПРИНТЕРОВ
    1.1 Первые реальные принтеры
    Развитие первых принтеров в 40-50 годах было связано с эволюцией печатающей машинки. В СССР и США предпринимались множественные попытки автоматизировать процесс набора символов, отпечатывающих на бумаге определенные символы через пропитанную чернилами ленту. Так, в нашей стране подобные разработки назывались АЦПУ (автоматизированные цифровые печатающие устройства), а в Америке их просто называли Printer – что значит «печатающий». Позже появились барабанные и лепестковые принтеры, которые использовали идеи Чарльза Бэбиджа, о которых мы говорили в прошлой статье, и могли наносить различные символы через ту же красящую ленту.

    Печать того времени не идет ни в какое сравнение по качеству и быстроте с современной. Одна из первых подобных «машин» была создана для компьютера Univac в 1953 году в недрах корпорации Remington-Rand, это был первый в мире высокоскоростной принтер. Впрочем, высокоскоростным он был, конечно, в понимании того времени – печатающее устройство могло печатать за минуту 600 строк по 120 символов в каждой.

    Рисунок 1.1

    1.2 Матричные принтеры
    Впервые идея матричной печати была реализована в 1964 году фирмой Seiko Epson Corporation. Инженеры компании сконструировали уникальный по тем временам механизм, который постоянно отпечатывал точное время – работал в качестве часов. В отличие от лепестковых и барабанных принтеров изображение формировалось из точек, наносимых на бумагу иглами через черную или цветную ленту. Эволюция данной разработки привела к появлению настоящих матричных принтеров.

    Основные конструктивные элементы матричного принтера — печатающая головка (каретка), которая двигается вдоль строки и наносит символы ударами иголок через ленту, пропитанную чернилами. Отсюда и появилось название «матричный принтер». Ведь все возможные символы складывались из разрешения матрицы, образуемой расположением игл, которых первое время было совсем немного – например, 9, 24, 35 и так далее. Ударное движение иглы запускалось электромагнитом, расположенным в барабане. Более подробно мы рассмотрели механизм в статье, непосредственно посвященной матричной технологии.

    Одним из первых серийных матричных принтеров был LA30 от компании DEC (Digital Equipment Corporation). Данное устройство было способно печатать только заглавные буквы размером 5 на 7 точек со скоростью 30 символов в секунду на бумаге специального размера. Печатающая головка этого принтера управлялась шаговым двигателем, а бумага протягивалась приводом с храповым механизмом – не очень надежным и шумным. Любопытно, что LA30 имел как последовательный, так и параллельный интерфейс.

    Рисунок 1.2
    Однако именно принтер DEC LA36 стал фактически символом печатающей техники, завоевав в своем время признание общественности. Разработчики исправили основные ошибки и недоработки, а также увеличили длину строки до 132 символов различного регистра. В результате для печати годилась стандартная перфорированная бумага. Каретку приводил в движение более мощный сервопривод с электромотором, оптическим датчиком положения и тахометром. Все это сделало принтер более удобным и надежным.

    Рисунок 1.3
    Еще одна интересная техническая особенность LA36 – не принимая от компьютера больше 30 символов в секунду, он печатал вдвое быстрее. Дело в том, что при возврате каретки следующая пачка символов попадала в буфер. Поэтому при печати новой строки принтер наверстывал упущенное со скоростью 60 символов в секунду. LA36 задал «моду» на разнотоновые звуки печати – в быстром и обычном режиме. Ведь его головка двигалась в одну сторону с одной скоростью, а в другую – с вдвое большей, создавая своеобразней офисный шумовой фон.
    Но самой популярной и покупаемой моделью вплоть до 90-х годов был Epson MX-80, сочетающий в себе относительную доступность и хорошие для того времени параметры производительности. Технология матричной печати долгое время доминировала на рынке, но в последние годы, благодаря развитию таких направлений как струйная и лазерная печать, а также их разновидности, уступила им основную нишу и ушла в тень специализированных решений.
    1.3 Струйная печать
    Если начать с самого начала, то можно считать моментом зарождения струйной печати 1833 год, когда Феликс Саварт обнаружил и констатировал однотипность образования капель жидкости, выпускаемой через узкое отверстие. Математическое описание этого явления было проведено в 1878 году лордом Рейли (который впоследствии получил Нобелевскую премии). Но только в 1951 году компания Siemens запатентовала работающее устройство, способное разделять струю на однотипные капли. Это изобретение привело к созданию мингографа, одного из первых коммерческих самописцев, используемых для регистрации значений напряжения.

    Говоря о струйной печати нельзя забывать и о таком подходе как drop-on-demand. Сегодня уже не много кто помнит об этом, но у первых струйных принтеров была серьезная проблема с отводом капель, которые не должны были попасть на бумагу. Суть метода drop-on-demand заключается в том, то устройство выпускает капли чернил только при необходимости.
    Первые разработки в этой области были применены в устройстве последовательной печати символов Siemens PT-80 в 1977 году, а также в принтере компании Silonics, появившемся годом позже. Эти принтеры использовали прообраз пьезоэлектрической печати, когда чернильные капли выходили наружу под действием волны давления, создаваемой механическим движением пьезокерамического элемента.

    Рисунок 1.4
    В 1979 году специалисты компании Canon изобрели метод печати по технологии drop-on-demand, в соответствии с которым капли выпускались наружу на поверхности небольшого нагревателя, расположенного рядом с соплом и регулировались при помощи конденсации туманообразных скоплений красителя. В Canon эту технологию назвали «пузырьковая печать».

    В 1980 году компания Hewlett-Packard независимо разработала схожую технологию, получившую название термическая струйная печать, и уже в 1984 году на рынке появилось решение ThinkJet — первый коммерчески успешный и относительно недорогой струйный принтер, обеспечивающий хорошее качество и разрешение печати.

    Струйные технологии развиваются и сегодня день, обеспечивая многоцветную печать, печать на больших форматах, они позволяют использовать как растворимые, так и пигментные красители (когда минимальные частицы краски проникают через сопла и оседают на бумаге). Современные струйные принтеры, можно сказать, находятся в состоянии прогресса и активно борются за свое место под солнцем. Усовершенствование скорости печати и устойчивости красителей к воздействиям времени, влаги и трению, а также снижение стоимости отпечатка сделали их серьезным конкурентом для лазерных и светодиодных принтеров.
    1.4 Лазерные принтеры
    Пальма первенства в производстве лазерных принтеров принадлежит компании XEROX. Именно ее сотрудники в 1969 году сообразили, что технологию копировальных устройств можно применить и в принтерах. Таким образом, фотобарабан заряжается отрицательно, а луч лазера снимает определенную часть заряда, проходя по фотобарабану, именно там, где должны быть напечатаны пиксели. Тонер лазерного принтера может быть изготовлен из различных материалов: металлической стружки, смол, угольной пыли и т.д. В любом случае он также заряжен отрицательно и потому прилипает именно в том месте, где пройдет лазер придаст барабану положительный потенциал. Барабан переносит электронное изображение на бумагу, к которой притянутся частицы тонера. В конце концов бумага попадает в печку, и тонер под действием нагревательного вала плавится, закрепляясь на бумаге. Более подробно мы уже рассказывали о технологии в предыдущих статьях.

    Еще в 1971 году появляется первый прототип лазерного принтера, однако только в 1977 году фирма XEROX выпустила устройство Xerox 9700 Electronic Printing System. В 1981 году Xerox продолжает свои разработки и выпускает компьютер STAR 8010. Вместе с ним продаются графический и текстовый редакторы, а так же программа для комбинирования текстов и графики и, естественно, лазерный принтер. Стоимость такого оборудования составляла в то время 17 000 долларов.

    Рисунок 1.5
    Следующий важный этап истории лазерных принтеров приходится на 1984 год. Тогда компания Hewlett-Packard начала выпускать серию доступных принтеров LaserJet, которые обеспечивали прекрасное на тот момент разрешение 300 dpi. В 1992 году HP выпускает свой принтер LaserJet 4, стоимостью немного меньше $1000 и разрешением 600 dpi. Можно сказать, что этот момент и стал переломным и лазерные принтеры стали приобретать популярность и завоевывать рынок офисной печати.

    Рисунок 1.6
    1.5 Светодиодные принтеры
    Светодиодные принтеры по праву считаются более технологичными, чем лазерные. В них вместо лазера используется длинная линейка со светодиодами, которые выборочно вспыхивают для создания электронного рисунка на барабане. Таким образом, данная технология является более экономичной и позволяет добиться большей скорости печати при прочих равных условиях (конструкция печатающего механизма, скорость интерфейса, используемый ЦП и т.д.). Первый светодиодный принтер был выпущен компанией OKI лишь в 1987 году, а спустя 10 лет, в 1998 году, так же компания разработала первый цветной светодиодный принтер.

    В нашей стране светодиодные принтеры появились в 1996 году с открытием регионального представительства OKI. В 1999 году светодиодные принтеры в Россию начинают поставлять Panasonic и Kyocera.

    История светодиодных принтеров в России тесно связана с бюджетной и домашней моделью OkiPage 4W, которая позиционировалась в нашей стране как базовая модель для офиса. OkiPage 4W оказывается значительно дешевле своих лазерных аналогов, и его продажи в бизнес-сегменте стартуют очень бодро. Однако, рассчитанные на домашние объемы печати (2500 страниц в месяц), быстро выходят из строя, как из-за превышения нагрузки, так и из-за некачественных заправочных материалов. Считается, что именно из-за этой ситуации светодиодная печать до сих пор не столь популярна в России.

    Рисунок 1.7
    Впрочем, в настоящее время светодиодные принтеры продолжают активное развитие, предлагая достойную альтернативу классическим лазерным моделям. В ассортименте производителей имеются как стандартные цветные и черно-белые, так и широкоформатные светодиодные принтеры.
    1.6 Сублимационная печать
    По просьбам трудящихся мы скажем несколько слов про такие технологии как термосублимационная печать и Micro Dry. Они появились относительно позднее, чем лазерная и струйная печать, и, быть может, поэтому они пока не заняли значительного места на рынке.

    Первооткрывателем сублимационной технологии считается француз Ноэль де Плассе. В 1957 году Ноэль де Плассе обнаружил, что некоторые красители способны сублимировать, то есть переходить из твёрдого состояния в газообразное, минуя жидкое. Однако в 60е его открытие не повлияло на печать, хотя через 20 лет с распространением персональных компьютеров и развитии технологий его идеи стали вновь актуальны. В 1985 году начали применять термосублимационную печать на практики, активно используя фото-принтерами компании Kodak для непосредственной печати с камер, а также компанией Mitsubishi Electric. Впрочем, сфера применения данной технологии весьма ограничена, так как для печати требуется специальная термобумага, а скорость переноса рисунка оказывается достаточно низкой, ведь краситель каждого цвета наносится на бумагу по очереди.

    В 1996 году была разработана технология печати Micro Dry, которая в основном используется в принтерах Citizen. Ее суть состоит в том, чтобы наносить твердый краситель прямо на носитель. Это обеспечивает возможность печати с одинаковым качеством на любой бумаге, в том числе красителями класса «металлик». Принтеры могут печатать с разрешением до 600х600 в цвете, но стоимость отпечатка пока остается достаточно высокой.

    Рисунок 1.8
    1.7 Ромашковый принтер
    Ромашковые принтеры сродни пишущим машинкам. В своё время такие принтеры были широко распространены в 1950—1960-е годы, однако с появлением более скоростных матричных аппаратов, а также лазерных принтеров ромашковые практически исчезли, и в настоящее время такой способ печати используется только в электронных и механических печатных машинках.

    Основным элементом ромашкового аппарата является колесо-«ромашка», на концах лепестков которого находятся матрицы букв, цифр и прочих символов, обычно по два варианта (прописная и строчная буква) на лепесток.

    Ромашка надевается на ось, вращаемую шаговым двигателем. Обычно весь этот механизм вместе с двигателем подмотки ленты, картриджем с красящей и корректировочной лентой выполняется на каретке. При включении происходит начальное позиционирование колеса. Каждому печатаемому символу соответствует определённое число шагов для поворота колеса от начального положения и признак «сдвинуть ли ось по вертикали для верхнего регистра». шаговый двигатель проворачивает колесо до нужной буквы, электромагнит может сдвинуть ось для получения прописной буквы. Для удара по лепестку ромашки используется электромагнитный молоток. Через красящую ленту лепесток ударяет по бумаге.

    Каретка ставится перпендикулярно цилиндрическому валу, с помощью которого подаётся бумага. Каретка движется вдоль вала. Таким образом формируется каждая следующая буква в строке. Для перехода на следующую строку вал поворачивается на один шаг, как и в пишущей машинке. Все используемые двигатели — шаговые.

    Возможна смена ромашек, что позволяет печатать различными шрифтами или наборами символов.

    Для ромашковых принтеров выпускается два вида красящих лент: тряпичная, окрашенная красителем, и пластиковая с нанесенным красителем.

    Пластиковая лента позволяет получить более чёткий отпечаток, однако после каждого удара краситель полностью переносится на бумагу. После того как лента полностью используется, её нужно заменить. Тряпичная лента выполняется в виде кольца или устанавливается на реверсируемое устройства, что позволяет использовать одни и те же участки ленты несколько раз.

    Для пишущих машинок применялись также пластиковые корректировочные ленты — с белым красителем. Корректировка происходит следующим образом: механизм возвращает каретку назад. После этого происходит замена обычной красящей ленты на корректирующую, например поднятием механизма каретки или поднятием натянутой корректировочной ленты. После этого буква, которую нужно исправлять, печатается заново, но уже через корректировочную ленту.

    Рисунок 1.9
    1.8 Барабанный принтер
    Барабанные литерные принтеры обладают очень высоким быстродействием, печатая до 600 строк в минуту. В них, вместо движущейся вдоль вала подачи бумаги каретки, на всю ширину бумаги располагается барабан, набранный из дисков, на торцевой поверхности которых расположены литерные матрицы. За бумагой на уровне барабана расположен ряд молоточков, управляемых электромагнитами. Барабан вращается с большой скоростью, но в момент прохода матриц нужных литер мимо красящей ленты, молоточки у соответствующих знакомест выдвигаются, прижимая бумагу через красящую ленту к матрицам на барабане, и на бумаге остаются отпечатки литер с барабана. За один оборот барабана оказывается напечатана вся строка целиком, и бумага сдвигается для печати следующей строки.

    Из-за недостаточной точности времени удара, такие принтеры давали характерный вид «пляшущих» по вертикали в строке букв. Подавляющее большинство принтеров этого типа имели очень ограниченный набор символов, поэтому именно для них характерна печать «только прописными буквами» и полная идентичность начертания букв различных алфавитов (А русского и A латинского, например).

    Рисунок 1.10
    1.9 Цепной (гусеничный) принтер
    Выпускались принтеры, матрицы литер у которых располагались на соединённых в цепь пластинках. Такая цепь двигалась вдоль печатаемой строки, и молоточки за бумагой в нужный момент прижимали бумагу к ней. Цепь с набором матриц в таком принтере поменять существенно легче, чем тяжёлый барабан в барабанном. Для ускорения печати матрицы более часто используемых литер на цепи повторялись большее количество раз.

    Распечатки на таких принтерах отличаются неравномерностью расположения букв по горизонтали, По мере износа матриц и механизма цепи правые (реже левые) элементы литер печатаются всё более бледно.

    Рисунок 1.11
    1.10 Фотонные принтеры
    Яркими представителями фотонных принтеров прошлого являются фотолаборатории от Durst, FujiFilm, MCI, Ricoh и многие другие, осуществляет экспонирование изображения на фотобумаге. На сегодня этот способ печати считается самым качественным и профессиональным на уровне с офсетным. Позволяет печатать с качеством до 4000 dpi без полошения и растра. Печатает только на специально-подготовленных материалах и с маленькой скоростью от 20 до 60 см в минуту. При этом:

    воспроизведение цветов 16,7 млн оттенков;

    глубина цвета 36 бит;

    передача 256 оттенков на каждый цвет (RGB).

    Изображение высокой стойкости — в помещении 10 лет, на солнце — 1 год. Печатает только на рулонных материалах. Используется в основном для печати фотографий и качественных репродукций, а также фотокниг.

    Представитель фотонных принтеров — LumeJet.

    Рисунок 1.12
    1.11 Термопринтеры
    Процесс печати состоит в формировании изображения термической печатной головкой на специальной термочувствительной бумаге, которая чернеет (синеет) в местах нагрева, образуя символы[4]. Просты и дешёвы, не требуют красящего вещества, но качество печати невысокое.

    Сравнение с другими типами

    Качество печати — разрешение достигает 300 dpi.

    Цветопередача. Чёрно-белый либо синий.

    Скорость печати. Очень быстры, быстрее матричных и струйных принтеров.

    Стоимость отпечатка. Крайне низка, 1 м² кассовой ленты стоит примерно вдвое больше 1 м² офисной бумаги. Это дешевле лазерных отпечатков.

    Печать на нетрадиционных материалах. Печатают только на термобумаге. Выпускают также плёнки и самоклеящиеся этикетки с термопокрытием.

    Устойчивость отпечатка к внешним воздействиям. Отпечатки чернеют от трения, давления, бытовых нагревательных приборов, некоторых бытовых чистящих средств. Выцветают за несколько лет.

    Возможная длина отпечатка. Ограничивается только программным обеспечением.

    Экологичность. Термическая печатная головка не создаёт шума, шум работающего принтера ограничен лишь шумом устройства подачи материала. Практически нет загрязнения. В термобумагу входит вредное вещество бисфенол А, относящееся к веществам 3-го класса опасности (умеренно опасные вещества, ГОСТ 12.1.007).

    Простота обслуживания. Крайне надёжны; единственный расходный материал — термобумага. В современных термопринтерах используется стационарная печатная головка на всю ширину ленты. В ранних моделях часто реализовывалась построчная печать термоголовкой, расположенной на подвижной каретке аналогично матричным и струйным принтерам.

    Основное применение в настоящее время. Массово применяются в малоформатных и малогабаритных печатающих и регистрирующих устройствах, в том числе встраиваемых и с батарейным питанием: факсахкассовых аппаратахбанкоматахтерминалах обслуживаниямедицинских и измерительных приборах.

    Твердокрасочные (или твердочернильные) принтеры[править | править код]

    Основная статья: Твердочернильный принтер

    Работают по струйному принципу, но вместо изначально жидкой краски они держат в расплавленном состоянии краску на основе парафина. Из-за большой массы печатающей головки её делают очень широкой, по ширине бумаги. Печатают не напрямую на бумагу, а на промежуточный вал.

    Фирменная технология Tektronix, впоследствии — Xerox.

    Сравнение с другими типами

    Качество печати — 300 и более точек на дюйм.

    Цветопередача. Аналогична лазерным принтерам; только из-за другого агрегатного состояния краски цвета выходят сочнее.

    Скорость печати. Xerox сумел добиться скорости в 30…85 страниц в минуту. Однако время до первого отпечатка велико, его пытались уменьшить исследованием привычек пользователя и разными уровнями нагрева (экономный/дежурный/рабочий): принтер прогревался в дежурное состояние, когда наиболее вероятно, что начнётся печать, и из этого состояния переходил в рабочее за несколько секунд.

    Стоимость отпечатка. Дешевле даже лазерных.

    Печать на нетрадиционных материалах. Работают даже на плохой бумаге.

    Устойчивость отпечатка к внешним воздействиям. Плохо держат сгибы, изломы, трение твёрдым предметом (теряется цветопередача, но не разборчивость). Нельзя ламинировать твердокрасочный лист, допечатывать его на лазерном принтере[5].

    Возможная длина отпечатка. Твердокрасочная печать — непрерывный процесс, и длина ограничивается прошивкой принтера.

    Экологичность. Принтер тих, в последних моделях сумели решить вопрос испарений[5]. В середине 1990-х президент Tektronix съел брикет краски, демонстрируя, что она безвредная. Высокое потребление электричества (50 Вт постоянно). Завхозу на утилизацию остаётся только пластиковая упаковка брикетов.

    Простота обслуживания. Несмотря на струйный принцип, не засоряются (нечему высыхать). Парафин при охлаждении сжимается, так что при отключении электроэнергии печатающая головка заполняется воздухом. Потому при включении принтер проводит прокачку головок, а затвердевшая порция краски идёт в отработку — так что желательно принтер держать постоянно включённым. Принтер можно дозаправлять даже во время работы. Перемещать запрещено, не запустив цикл охлаждения.

    Основное применение в настоящее время. Во второй половине 2010-х годов Xerox снял принтеры с производства, взамен предлагая лазерные. Применялись там, где большие объёмы цветной печати перемежаются с длинными простоями (например, при печати учебных или рекламных материалов).

    Рисунок 1.13
    1.12 Интернет-принтеры
    В последнее время на рынке офисной техники появились принтеры, программное обеспечение которых поддерживает непосредственное подключение к Интернету (обычно через роутер), что позволяет такому принтеру функционировать независимо от компьютера. Такое подключение обеспечивает ряд дополнительных возможностей:

    печать документов или веб-страниц прямо с дисплея принтера;

    печать документов или веб-страниц с любого веб-устройства (в том числе удалённого) без необходимости установки на нём драйвера принтера;

    просмотр состояния принтера и управление заданиями печати с помощью любого браузера вне зависимости от местонахождения;

    оперативное автоматическое обновление программного обеспечения принтера.

    Рисунок 1.14
    1.13 История развития компьютера
    Без компьютеров и похожей техники трудно представить современность. Нынешние устройства способны выполнять 1 млн операций в секунду и даже больше. Они активно используются компаниями и обычными пользователями.

    Современность – это период стремительного развития IT. При помощи виртуальных машин и устройств люди:

    работают;

    отдыхают;

    развлекаются;

    знакомятся;

    совершают покупки;

    обращаются в государственные и муниципальные органы.

    Но так было не всегда. Выпуск компьютеров первого поколения начался примерно в 20-веке. Тогда процесс приобрел массовость. До этого момента ЭВМ развивались по накатанной. И начало данного процесса лежит с момента становления человечества.

    ЭВМ – это

    Сначала требуется узнать, что подразумевается под понятием «вычислительная техника». Это – важнейший компонент процесса выполнения различных действий вычислительного характера. Комплекс технических средств, ключевые функциональные элементы которых выполнены на электронных составляющих. Он предназначается для автоматической обработки информации в процессе решения информационных задач и математических вычислений.

    Компьютер – это устройство/система, выполняющее конкретную, четко поставленную задачу, изменяемую последовательность операций. Последняя имеет название программы.

    Сегодня нет строгого деления на ЭВМ и компьютеры. Эти слова – аналоги.

    Классификация

    ЭВМ можно разделить на несколько категорий. Сегодня основными видами соответствующих устройств считают:

    компьютерные системы;

    девайсы для управления сетями;

    автоматизированные средства проектирования, создания моделей и прогнозов;

    автоматизированные системы управления и обработки информации;

    устройства разработки программного обеспечения.

    Представления о компьютерах сейчас сформировались весьма четкие. Даже дети работают с подобными устройствами. Но раньше ПК и ноутбуки были редкостью. Их история развития началась задолго до изобретения электричества.

    Основные этапы развития в истории

    В истории развития вычислительной техники трудно выделить какую-то единую систему. Связано это с тем, что в каждой стране соответствующий процесс протекал по-разному. Но сложилось так, что историки выделяют несколько этапов становления современных компьютеров. А именно:

    ручной;

    механический;

    электромеханический;

    электронный.

    Точного исторического классифицирования нет, но приведенный пример принято брать за основу. Границы каждого этапа весьма условны.

    Первые счетные устройства

    Современный компьютер – результат деятельности и развития человека. Но люди нуждались в выполнении различных математических задач еще до изобретения информационных технологий. С самого начала развития человечества население училось считать, подсчитывать, умножать и делить. Это помогало в торговле, а также планировании запасов и других сферах жизни.

    Самый простой вариант расчетов – использование эквивалентных предметов. Таких, которые не требуют пересчета количества его компонентов. Для этого задействовали балансирные весы. Они помогали определять массу.

    Принцип эквивалентности использовался в абаке – первых в мире счетах. Также люди использовали:

    четки;

    антикитерские механизмы (появились с развитием зубчатых колес).

    У разных народов рассматриваемые элементарные первые устройства для выполнения математических действий назывались по-разному. У японцев – серобян, у китайцев – суанпан, на Руси – русский шет.

    Палочки Непера

    В процессе подсчетов требовалось не только сложение и вычитание, но и умножение. Выполнялись такие действия при помощи палочек Непера. Их изобрел шотландский математик – Джон Непер. Он же стал первым автором логарифмов. Информация о подобных «устройствах» возникла в 1617.

    Неперский прибор непосредственно выполнял умножения. Деление тоже можно осуществить, но придется постараться. Данный вариант не получил широкого распространения.

    Линейки, таблицы и монограммы

    Сложные расчеты потребовались в xvii веке. Это время, когда необходимость сложных математических операций стала жизненно важна. Возникла потребность в работе с многозначными числами.

    В период с 1614 по 1623 в свет вышли совершенно новые типы вычислителей:

    логарифмическая линейка;

    логарифмические таблицы;

    возникновение механических арифмометров;

    палочки Непера.

    В 19 веке, взяв за основу логарифмы и логарифмические линейки появился их графический аналог – номограммы. Они использовались для проведения расчетом совершенно разных функций.

    Логарифмические таблички

    В 1614 мир узнал определение логарифмов и их значения. Непер решил заменить сложное умножение на простое сложение. Для этого он при помощи спецтаблиц сопоставил геометрические и арифметические прогрессии. Первая считалась исходной. Деление в этом случае автоматические заменяется на более простое и понятное человеку вычитание.

    Логарифмические таблицы расширялись и уточнялись другими математиками. Задействованы в научных и инженерных решениях более трех веков. Не выходили из «моды» до изобретения компьютеров и современных калькуляторов.

    Линейки

    Стоит обратить внимание и на такой элемент, как логарифмическая линейка. Создается путем нанесения соответствующей шкалы. Это – один из механических вычислителей.

    Приближенная к упомянутой конструкции теорию предложил астроном Эдмунд Гюнтер в начале 17 века. Он сказал, что можно на линейку нанести логарифмическую шкалу, а затем посредством двух циркулей складывать и вычитать их.

    Но в 1622 Уильям Отред опубликовал усовершенствованную логарифмическую линейку в «Кругах пропорций». Она была:

    круговой – при первом выпуске;

    прямоугольной – после 1633.

    Далее устройство делали более совершенным. Для этого создавали «движки», разметки по обе стороны, добавляли шкалы Уингейта, отмечали часто задействованные числа. В середине 19 века «девайс» оснастили бегунком.

    Использовали такие линеечки несколько поколений инженеров и других мастеров. На их базе созданы следующие вычислители:

    артиллерийская линейка;

    линейка Дробышева;

    навигационная;

    кардиологическая;

    офицерская.

    А еще появились навигационные расчетчики. Логарифмические линейки в будущем заменили карманные, привычные современному человеку калькуляторы.

    Номограммы

    С развитием рассматриваемых машин в мире появлялись разные приспособления для проведения тех или иных подсчетов. Пример – номограммы. Это – простейшие вычислители. Для них требуется:

    шкала;

    линейка (координатная сетка тоже годится);

    циркуль.

    Дополнительные вспомогательные элементы обычно не задействованы. Результаты просматриваются визуально, после чего фиксируются на бумаге. Для умножения и деления наносится логарифмическая шкала рядом с обычной, после – используется циркуль. Так получают вычислитель.

    Теория номографических построений разработана французский математиком Лаланном в 1843. Она опирается на теории Оканя, который впервые внедрил понятие «номограмма». В России с соответствующей темой впервые работал Герсеванов, после – Глаголев. Он создал первую советскую номографическую школу.

    Арифмометры

    Плоды человеческих трудов должны быть зафиксированы в истории. Так, развивая механику и прочие науки, люди научились создавать вычислительные устройства различной сложности. В 1623 Вильгельм Шиккард разработал первый арифмометр – «Считающие часы». Он умел выполнял всего 4 математических действия. Работало приспособление за счет звездочек и шестеренок.

    Далее появились машины Паскаля и Лейбница. Последний раскрыл человечеству, что такое двоичная система счисления. На ней основаны современные компьютеры. Но до 1940-х многие разработки (включая те, что делал французский учены Чарльз Бэббидж) основывались на сложной в реализации десятичной системе.

    В 1820 появилась новая вещь для вычислений. Она получила название арифмометра Томаса. Умела:

    вычитать;

    делить;

    умножать;

    складывать.

    В 1945 Штаффель воссоздал счетную машину, которая дополнительно вычисляла квадратные корни. Арифмометры, которые начали считать десятичные числа, применялись на практике до 1970.

    Перфокарты

    Известные миру ученые старались изобретать различные приспособления для облегчения подсчетов в той или иной степени. Соответствующая задача оказалась не слишком простой в реализации. Она часто требовала огромного количества времени и ресурсов.

    С развитием уровня технологий начали возникать совершенно новые счетные приспособления. В 1804 Мари Жаккар создал ткацкий станок, узор на котором определяли при помощи перфокарт. Их замена не требовала корректировок в механике станка. Это стало основой прогресса в формировании программирования.

    В 1832 Семен Корсаков задействовал перфокарты в интеллектуальных машинах. Они применялись для информационного поиска. Эти машины стали прообразами нынешних баз данных и экспертных систем.

    В 1838 Бэрридж начал разработку аналитической машины. В 1890 Бюро Переписи Америки стало использовать механизмы сортировки (табуляторы) и перфокарты Холлерита для обработки данных переписи, задействованной для мандатов. В итоге компания Холлерита стала основой известной IBM.

    Компьютерные решения, известные по сей день, долгое время основывались на перфокартах. Эти приспособления применялись примерно до 1970 с завидной регулярностью.

    Программируемые устройства

    Проделанных в развитии технологий прогресс за все время колоссален. В 1835 появилась первая аналитическая машина (Бэббиджа). Она стала программируемой.

    Разностную машину 2-ой реконструкции можно увидеть в Лондонском музее науки. Она работает по принципам Бэббиджа. По стопам этого ученого шел Перси Лудгет из Дублина. Он смог представить механический компьютер. Устройство представлено миру в 1909.

    Электродвигатели

    В 1900 многих привычных ЭВМ не стало – их усовершенствовали. В именно – заменили проекты на включающие в себя электрические двигатели. В них менялась на то или иное положение позиция шестеренки.

    Настольные арифмометры «электрического» типа умели:

    умножать;

    вычитать;

    складывать;

    делить.

    В 1948 выпускавшееся ранее вычислительная продукция снова была усовершенствована. Речь идет о Curta – небольшим арифмометром карманного типа. Умещался в одной реке. У этого «инструмента» несколько версий, выходивших в свет до 1960-х.

    Калькуляторы

    Электронный настольный калькулятор был изобретен в 1961 году в Британии. Использовал:

    117 мини-тиратронов;

    дисплей на газоразрядных цифровых индикаторах.

    В 1963 Friden выпустил EC-130, который выполнял 4 операции. У него были следующие параметры:

    5-дюймовая электронно-лучевая трубка;

    разрешение – 13-цифровое;

    стоимость – 2 200 долларов.

    В 132 модели добавили функции обратного типа и вычисления квадратного корня. В 1965 появился LOCI-2. Это – настольный калькулятор на транзисторах с 10 цифрами. Умел производить вычисления логарифмов.

    В СССР до войны спросом пользовался арифмометр «Феликс». Применялся до изобретения ЭВМ.

    Цифровые компьютеры

    В 1936 Конрад Цузе внес свой вклад в развитие рассматриваемой темы. Он весьма значителен. Ученый из Германии создал линию цифровых компьютеров серии Z. Они имели собственную ограниченную память и возможности программирования.

    В 1939 возникло второе поколение соответствующего девайса. Изображения машины в ходе Второй Мировой Войны были уничтожены. Работали Z2 на реле.

    В 1941 появилось третье Z-поколение. Это – первый работающий компьютер, управляемый программным обеспечением. В такой форме «девайс» является прародителем современных ПК.

    Во времена Второй Мировой Войны в Великобритании изобрели дешифратор «Энигмы». Получил название «Колосс». Предусматривал использование элементной базы из ламп и перфолент. На этом английский вклад закончился.

    Также в свет вышел ENIAC, родом из Америки. Это – первый компьютер общего назначения. Производительность и скорость вычислений была относительно долгая, но быстрее, чем раньше. Разработка велась с 1943 по 1945.

    Компьютерное поколение

    После Второй Мировой Войны началась главная «ступень» развития IT. Наступило мирное время, когда люди смогли изучить интегральные схемы, а также производить различные механизмы без спешки. В этот период в свет вышли несколько компьютерных поколений.

    Первая ступень

    История развития вычислительной техники современного типа началась с ламповых компьютеров. Основаны они на архитектуре фон Неймана. Малая экспериментальная машина создана в Манчестерском университете в 1948.

    В «мирном режиме» ученые произвели:

    Марк 1;

    EDSAC;

    EDVAC.

    Это – «Евы» современной архитектуры ПК. В Европе к первому поколению относят Z4, в СССР – МЭСМ.

    Серийный выпуск компьютеров в Советском Союзе начался с 1953 – с ЭВМ «Стрела». В 1954 IBM представила IBM 360, которая быстро набрала популярность. Этот «модельный ряд» выпускался в 2 000 экземплярах.

    В 1955 появилось понятие микропрограммирования. В 1956 IBM продает устройство для хранения – магнитные ленты, основанные на дисках – RAMAC. Устройство могло хранить до 5 МБ данных.

    Второе поколение

    Началось с изобретения транзистора. IBM представили IBM 650 на лампах. Но размер устройства достигал письменного стола. Доступны такие устройства были только для работы крупных организаций из-за своей стоимости.

    Далее популярностью пользовались следующие «девайсы»:

    IBM 7090;

    IBM 1401 – задействовала перфокарточный ввод;

    IBM 1620 – на перфолентах, позже – на перфокартах;

    PDP-1 от DEC в 1960;

    B5000 от Burroughs Corporation со стековой архитектурой и дескрипторами;

    Atlas – с виртуальной памятью на основе подкачке страниц и конвейерным выполнением инструкций.

    В этот же период началось развитие языков программирования высокого уровня. Они помогали прямо задавать цели ПО и применяются по сей день.

    Третье поколение

    Начало – в 1960. Это – период бурного роста ПК. Началось все с изобретения интегральной схемы. В 1964 мир увидел мейнфрейм IBM/360. Аналогом в СССР послужили устройства типа ЕС ЭВМ.

    Вместе с третьим поколением выпускалось второе. Это происходило до 1970.

    Четвертое поколение

    Информация уже передавалась через шину данных с достойной тактовой частотой. В 1970-е появилось 4 поколение компьютерных устройств. Началось все с создания центрального процессора на одном кристалле. Так появились микропроцессоры от Intel.

    Стив Возняк, работающий в Apple, придумал первый домашний ПК. Он получил массовое производство.

    Пятое поколение

    Датируется 1992 годом. Можно назвать это «современным движением». Техника для вычисления была основана на сверхсложных микропроцессорах, включающих в себя параллельно-векторную структуру. Она подходит для выполнения огромного количества команд одновременно. Технику такого типа, предназначенную для широкого применения, задействуют для быстрой и точной обработки данных, создания эффективно функционирующих сетей.

    Шестое поколение

    Сейчас все еще актуально развитие вычислительных техник. Но теперь набора элементарных математических функций для удовлетворения потребностей населения мало.

    Шестое поколение ЭВМ началось примерно с 2013. Представлены оптоэлектронными и электронными устройствами. Включают в себя тысячи микропроцессоров. Они обладают массовым параллелизмом, а также моделирующей архитектурой нейронных биологических систем.

    Этапы становления истории ЭВМ, состоящей как из больших шагов, так и мелких открытий, позволили подойти к внедрению искусственного интеллекта. Сейчас можно сделать вывод о том, что IT-сфера стремительно развивается. Она начинает использовать биоданные и совершенные технологии программирования, чтобы облегчать жизнь компаниям и рядовым гражданам.

    История развития вычислительной техники в наши времена привела к созданию практически совершенных цифровых машин. И пока неизвестно, что будет дальше. Но разработчики стараются производить «девайсы», которые требовали бы минимального вмешательства человека в процесс работы.

    ЗАКЛЮЧЕНИЕ
    Проанализировав исторические, экономические, физические свойства принтеров мы уже можем точно сказать что и где используется.

    Матричные принтеры ушли в отставку, сохранив за собой лишь довольно узкую специализацию вроде печати чеков и тому подобных документов, также они применяются в бухгалтериях и билетных кассах для впечатывания текста в готовые бланки. Но каковы они были вначале и с помощью них произошёл бурный толчок в развитии принтерной индустрии. Именно матричные принтеры заложили основу всех последующих принтеров - «Любой символ и любое изображение можно сформировать из точек».

    По распространённости лидером является струйная печать, второй -- лазерная. Да, именно они сейчас конкурируют за место в каждом доме.

    Когда то утопическая идея «Принтер в каждый дом» реализовалась. Теперь эта техника конструируется в мировых масштабах и легко доступна. Ассортимент многогранен и удовлетворит потребности любого пользователя.

    Но есть одно но. Технологии печати, придуманные в прошлом веке, сильно не изменились. Да, техпроцесс совершенствуется, увеличивается количество точек на дюйм, улучшается качество и скорость печати. Но никаких существенных изменений в мире принтеров не происходит.

    Остаётся надеяться, что эволюция принтеров не закончилась и в будущем мы увидим ещё что то новенькое от учёных-технологов.

    СПИСОК ЛИТЕРАТУРЫ
    1. Матричный принтер https://yandex.kz/video/preview/11495667192259410577

    2. Струйная печать https://yandex.kz/video/preview/12752915431815291903

    3. Лазерный принтер https://yandex.kz/video/preview/10468423774083897735

    4. Светодиодный принтер https://yandex.kz/video/preview/14856756536971695621

    5. Сублимационная печать https://yandex.kz/video/preview/1800034076043417915

    6. Книга про принтеры https://ideafix.name/wp-content/uploads/stuff/book139.pdf

    7. Барабанный принтер https://yandex.kz/video/preview/663354043513327724

    8. Интернет принтер https://yandex.kz/video/preview/8289460809227958729

    9. Фотонный принтер https://yandex.kz/video/preview/14333453182785605632

    10. Книга – «Компьютер своими руками», С. В. Глушаков


    написать администратору сайта