Главная страница
Навигация по странице:

  • А)Лучевая диагностика

  • Общие принципы выбора оптимального лучевого метода исследования

  • В) Лучевая терапия

  • Радиология. 1. Радиология


    Скачать 44.97 Kb.
    Название1. Радиология
    Дата05.11.2018
    Размер44.97 Kb.
    Формат файлаdocx
    Имя файлаРадиология.docx
    ТипДокументы
    #55455
    страница2 из 3
    1   2   3

    3. Лучевая диагностика и терапия


    Медицинская радиология  область медицины, разрабатывающая теорию и практику применения излучений в медицинских целях. Медицинская радиология включает в себя две основные научные дисциплины: диагностическую радиологию (лучевую диагностику) и терапевтическую радиологию (лучевую терапию).

    А)Лучевая диагностика

    Лучевая диагностика — наука о применении излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека в целях профилактики и распознавания болезней. Лучевая терапия — наука о применении ионизирующих излучений для лечения болезней.

    В состав лучевой диагностики входят рентгенодиагностика (рентгенология), радионуклидная диагностика, ультразвуковая диагностика,магнитно-резонансная диагностика, медицинская термография (тепловидение). Кроме того, к ней примыкает так называемая интервенционная радиология, включающая в себя выполнение лечебных вмешательств на базе лучевых диагностических процедур.

    Методы лучевой диагностики. Открытие рентгеновских лучей положило начало новой эре в медицинской диагностике – эре рентгенологии. В последующем арсенал диагностических средств пополнился методами, в основе которых - другие виды ионизирующих и неионизирующих излучений (радиоизотопные, ультразвуковые методы, магнитно-резонансная томография). Год за годом лучевые методы исследования совершенствовались. В настоящее время они играют ведущую роль в выявлении и установлении характера большинства заболеваний. На данном этапе изучения перед Вами поставлена цель (общая): уметь интерпретировать принципы получения медицинского диагностического изображения различными лучевыми методами и предназначение этих методов. Достижение общей цели обеспечивается конкретными целями: уметь: 1) трактовать принципы получения информации с помощью рентгенологических, радиоизотопных, ультразвуковых методов исследования и магнитно-резонансной томографии; 2) трактовать предназначение этих методов исследования; 3) трактовать общие принципы выбора оптимального лучевого метода исследования. Освоить вышеперечисленные цели невозможно без базисных знаний-умений, преподаваемых на кафедре медицинской и биологической физики: 1) трактовать принципы получения и физические характеристики рентгеновских лучей;  2) трактовать радиоактивность, возникающие при этом излучения и их физические характеристики; 3) трактовать принципы получения ультразвуковых волн и их физические характеристики; 5) трактовать явление магнитного резонанса; 6) интерпретировать механизм биологического действия различных видов излучений. 1. Рентгенологические методы исследования Рентгенологическое исследование до настоящего времени играет важную роль в диагностике заболеваний человека. Оно основано на разной степени поглощения рентгеновских лучей различными тканями и органами тела человека. В большей степени лучи поглощаются в костях, в меньшей – в паренхиматозных органах, мышцах и жидких средах организма, ещё менее – в жировой клетчатке и почти не задерживаются в газах. В тех случаях, когда рядом расположенные органы одинаково поглощают рентгеновское излучение, они не различимы при рентгенологическом исследовании. В таких ситуациях прибегают к искусственному контрастированию. Следовательно, рентгенологическое исследование может проводиться в условиях естественной контрастности или искусственного контрастирования. Существует много различных методик рентгенологического исследования. Целью (общей) изучения данного раздела является умение интерпретировать принципы получения рентгенологического изображения и предназначение различных рентгенологических методов исследования. Для этого необходимо уметь:  1) интерпретировать принципы получения изображения при рентгеноскопии, рентгенографии, томографии, флюорографии, контрастных методиках исследования, компьютерной томографии; 2) трактовать предназначение рентгеноскопии, рентгенографии, томографии, флюорографии, контрастных методик исследования, компьютерной томографии. 1.1. Рентгеноскопия Рентгеноскопия, т.е. получение теневого изображения на просвечивающем (флюоресцентном) экране, является наиболее доступной и технически простой методикой исследования. Она позволяет судить о форме, положении и размерах органа и в некоторых случаях - его функции. Исследуя больного в различных проекциях и положениях тела, врач-рентгенолог получает объёмное представление об органах человека и определяемой патологии. Чем сильнее поглощает исследуемый орган или патологическое образование излучение, тем меньше лучей попадает на экран. Поэтому такой орган или образование отбрасывают тень на флюоресцирующий экран. И наоборот, если орган или патология менее плотные, то сквозь них проходит больше лучей, и они попадают на экран, вызывая как бы его просветление (свечение). Флюоресцентный экран светится слабо. Поэтому это исследование проводят в затемненном помещении, а врач должен в течение 15 минут адаптироваться к темноте. Современные рентгенаппараты оснащены электронно-оптическими преобразователями, усиливающими и передающими рентгеновское изображение на монитор (телеэкран).  Однако рентгеноскопия имеет существенные недостатки. Во-первых, она обусловливает значительную лучевую нагрузку. Во-вторых, её разрешающая способность намного ниже, чем рентгенографии.  Эти недостатки менее выражены при использовании рентгентелевизионного просвечивания. На мониторе можно менять яркость, контрастность, тем самым создавая лучшие условия для просмотра. Разрешающая способность такой рентгеноскопии намного выше, а лучевая нагрузка - меньше. Однако любое просвечивание отличается субъективностью. Все врачи должны полагаться на профессионализм врача-рентгенолога. В некоторых случаях для объективизации исследования рентгенолог выполняет во время скопии рентгенограммы. С этой же целью проводят и видеозапись исследования при рентгентелевизионном просвечивании. 1.2. Рентгенография Рентгенография – метод рентгенологического исследования, при котором изображение получается на рентгеновской плёнке. Рентгенограмма по отношению к изображению, видимому на рентгеноскопическом экране, является негативом. Поэтому светлым участкам на экране соответствуют тёмные на плёнке (так называемые просветления), и наоборот, тёмным участкам – светлые (тени). На рентгенограммах всегда получается плоскостное изображение с суммацией всех точек, расположенных по ходу лучей. Для получения объёмного представления необходимо производить по крайней мере 2 снимка во взаимно перпендикулярных плоскостях. Главным преимуществом рентгенографии является возможность документировать определяемые изменения. Кроме того, она обладает значительно большей разрешающей способностью, чем рентгеноскопия. В последние годы нашла применение цифровая (дигитальная) рентгенография, при которой приемником рентгеновских лучей являются специальные пластины. После экспозиции рентгеновскими лучами на них остается скрытое изображение объекта. При сканировании пластин лазерным лучом высвобождается энергия в виде свечения, интенсивность которого пропорциональна дозе поглощенного рентгеновского излучения. Это свечение регистрируется фотодетектором и переводится в цифровой формат. Полученное изображение может быть выведено на монитор, распечатано на принтере и сохранено в памяти компьютера.  1.3. Томография Томография – рентгенологический метод послойного исследования органов и тканей. На томограммах в отличие от рентгенограмм получают изображение структур, расположенных в какой-либо одной плоскости, т.е. устраняется эффект суммации. Это достигается за счет одновременного движения рентгентрубки и пленки. Появление компьютерной томографии резко снизило применение томографии. 1.4. Флюорография Флюорография обычно используется для проведения массовых скрининговых рентгенологических исследований, особенно для выявления патологии лёгких. Суть метода заключается в фотографировании изображения с рентгеновского экрана или экрана электронно-оптического усилителя на фотоплёнку. Размер кадра обычно 70х70 или 100х100 мм. На флюорограммах детали изображения видны лучше, чем при рентггеноскопии, но хуже, чем при рентгенографии. Доза облучения, получаемая исследуемым, также больше, чем при рентгенографии. 1.5. Методики рентгенологического исследования в условиях искусственного контрастирования Как уже указывалось выше, ряд органов, особенно полых, поглощают рентгеновские лучи практически одинаково с окружающими их мягкими тканями. Поэтому при рентгенологическом исследовании они не определяются. Для визуализации их искусственно контрастируют, вводя контрастное вещество. Чаше всего с этой целью используются различные жидкостные йодистые соединения.  В ряде случаев важно получить изображение бронхов, особенно при бронхоэктатической болезни, врождённых пороках бронхов, наличии внутреннего бронхиального или бронхо-плеврального свища. В подобных случаях установить диагноз помогает исследование в условиях контрастирования бронхов – бронхография. Кровеносные сосуды на обычных рентгенограммах не видны, за исключением сосудов лёгких. Для оценки их состояния проводят ангиографию – рентгенологическое исследование сосудов с применением контрастного вещества. При артериографии контрастное вещество вводят в артерии, при флебографии – в вены.  При введении контрастного вещества в артерию на снимке в норме последовательно отражаются фазы кровотока: артериальная, капиллярная и венозная. Особое значение контрастное исследование имеет при изучении мочевывыделительной системы.  Различают выделительную (экскреторную) урографию и ретро-градную (восходящую) пиелографию. В основе выделительной урографии лежит физиологическая способность почек захватывать из крови йодированные органические соединения, концентрировать их и выделять с мочой. Перед исследованием пациент нуждается в соответствующей подготовке - очишении кишечника. Исследование проводится натощак. Обычно в локтевую вену вводят 20-40 мл одного из уротропных веществ. Затем через 3-5, 10-14 и 20-25 минут делают снимки. Если секреторная функция почек понижена производится инфузионная урография. При этом пациенту медленно капельно вводят большое количество контрастного вещества (60 –100 мл), разведенного 5% раствором глюкозы. Экскреторная урография даёт возможность оценить не только лоханки, чашечки, мочеточники, общую форму и размеры почек, но и их функциональное состояние.  В большинстве случаев выделительная урография обеспечивает получение достаточной информации о чащечно-лоханочной системе. Но всё же в единичных случаях, когда это по какой-либо причине не удаётся (например, при значительном снижении или отсутствии функции почки), выполняется восходящая (ретроградная) пиелография. Для этого катетер вводят в мочеточник до нужного уровня, вплоть до лоханки, через него вводят контрастное вещество (7-10 мл) и делают снимки.  Для исследования желчевыводящих путей в настоящее время используют чрескожную чреспеченочную холеграфию и внутривенную холецистохолангиографию. В первом случае контрастное вещество вводится через катетер непосредственно в общий желчный проток. Во втором случае контраст, введенный внутривенно, в гепатоцитах смешивается с желчью и с ней выводится, заполняя желчные протоки и желчный пузырь.  Для оценки проходимости маточных труб применяют гистеросальпингографию (метросльпингографию), при которой контрастное вещество вводится через влагалище в полость матки с помощью специального шприца. Контрастная рентгенметодика изучения протоков различных желёз (молочной, слюнной и др.) называется дуктографией, различных свищевых ходов – фистулографией. Пищеварительный тракт изучают в условиях искусственного контрастирования с помощью взвеси сульфата бария, который при исследовании пищевода, желудка и тонкой кишки пациент принимает внутрь, а при исследовании толстой кишки вводят ретроградно. Оценка состояния пищеварительного тракта обязательно проводится путем рентгеноскопии с выполнением серии рентгенограмм. Исследование толстой кишки имеет особое название – ирригоскопия с ирригографией.  1.6. Компьютерная томография Компьютерная томография (КТ) – метод послойного рентгенологического исследования, в основе которого - компьютерная обработка множественных рентгенологических изображений слоев тела человека в поперечном сечении. Вокруг человеческого тела по окружности расположены множественные ионизационные или сцинтилляционные датчики, улавливающие рентгеновское излучение, прошедшее через исследуемого.  С помощью компьютера врач может увеличивать изображение, выделять и увеличивать различные его части, определять размеры и что очень важно – оценивать плотность каждого участка в условных единицах. Информация о плотности ткани может быть представлена в виде чисел и гистограмм. Для измерения плотности используют шкалу Хаунсвильда с диапазоном свыше 4000 единиц. За нулевой уровень плотности принята плотность воды. Плотность костей колеблется от +800 до +3000 единиц H (Хаунсвильда), паренхиматозных тканей – в пределах 40-80 ед Н, воздуха и газов - около -1000 ед H.  Плотные образования на КТ видны более светлыми и называются гиперденсивными, менее плотные видны более светлыми и называются гиподенсивными. Для усиления контрастности при КТ также используют контрастные вещества. Введенные внутривенно иодистые соединения улучшают визуализацию патологических очагов в паренхиматозных органов. Важным преимуществом современных компьютерных томографов является возможность по серии двухмерных изображений реконструировать трехмерное изображение объекта. 2. Радионуклидные методы исследования Возможность получения искусственных радиоактивных изотопов позволила расширить сферу применения радиоактивных индикаторов в различных отраслях науки, в том числе и в медицине. Радионуклидная визуализация основана на регистрации излучения, испускаемого находящимся внутри пациента радиоактивным веществом. Таким образом, общее между рентген- и радионуклидной диагностикой – использование ионизирующего излучения.  Радиоактивные вещества, называемые радиофармацевтическими препаратами (РФП), могут использоваться как в диагностических, так и в терапевтических целях. Все они имеют в своем составе радионуклиды – нестабильные атомы, спонтанно распадающиеся с выделением энергии. Идеальный радиофармпрепарат накапливается только в органах и структурах, предназначенных для визуализации. Накопление РФП может обусловливаться, например, метаболическими процессами (молекула-носитель может быть частью метаболической цепочки) либо локальной перфузией органа. Возможность изучения физиологических функций параллельно с определением топографо-анатомических параметров – главное преимущество радионуклидных методов диагностики. Для визуализации используют радионуклиды, испускающие гамма-кванты, так как альфа- и бета-частицы имеют низкую проникающую способность в тканях. В зависимости от степени накопления РФП различают «горячие» очаги (с повышенным накоплением) и «холодные» очаги (с пониженным накоплением или его отсутствием). Существует несколько различных методов радионуклидного исследования. Целью (общей) изучения данного раздела является умение интерпретировать принципы получения радионуклидного изображения и предназначение различных радионуклидных методов исследования. Для этого необходимо уметь:  1) интерпретировать принципы получения изображения при сцинтиграфии, эмиссионной компьютерной томографии (однофотонной и позитронной); 2) интерпретировать принципы получения радиографических кривых; 2) трактовать предназначение сцинтиграфии, эмиссионной компьютерной томографии, радиографии. 2.1 Сцинтиграфия – самый распространенный метод радионуклидной визуализации. Исследование проводится с помощью гамма-камеры. Основным ее компонентом является дисковидный сцинтилляционный кристалл йодида натрия большого диаметра (около 60 см). Этот кристалл является детектором, улавливающим гамма-излучение, испускаемое РФП. Перед кристаллом со стороны пациента располагается специальное свинцовое защитное устройство – коллиматор, определяющий проекцию излучения на кристалл. Параллельно расположенные отверстия на коллиматоре способствуют проецированию на поверхность кристалла двухмерного отображения распределения РФП в масштабе 1:1.  Гамма-фотоны при попадании на сцинтилляционный кристалл вызывают на нем вспышки света (сцинтилляции), которые передаются на фотоумножитель, генерирующий электрические сигналы. На основании регистрации этих сигналов реконструируется двухмерное проекционное изображение распределения РФП. Окончательное изображение может быть представлено в аналоговом формате на фотопленке. Однако большинство гамма-камер позволяет создавать и цифровые изображения. Большинство сцинтиграфических исследований выполняются после внутривенного введения РФП (исключение – вдыхание радиоактивного ксенона при ингаляционной сцинтиграфии легких). При перфузионной сцинтиграфии легких используются меченные 99mТс макроагрегаты альбумина или микросферы, которые задерживаются в мельчайших легочных артериолах. Получают изображения в прямых (передней и задней), боковых и косых проекциях. Сцинтиграфия скелета выполняется с помощью меченных Тс99m дифосфонатов, накапливающихся в метаболически активной костной ткани. Для исследования печени применяют гепатобилисцинтиграфию и гепатосцинтиграфию. Первый метод изучает жёлчеобразовательную.и желчевыделительную функцию печени и состояние желчевыводящих путей – их проходимость, накопительную и сократительную способность желчного пузыря, и представляет собой динамическое сцинтиграфическое исследование. В его основе лежит способность гепатоцитов поглощать из крови и транспортировать в составе желчи некоторые органические вещества.  Гепатосцинтиграфия – статическая сцинтиграфия - позволяет оценить барьерную функцию печени и селезенки и основана на том, что звездчатые ретикулоциты печени и селезенки, очищая плазму, фагоцитируют частички коллоидного раствора РФП. С целью исследования почек используются статическая и динамическая нефросцинтиграфия. Суть метода заключается в получении изображения почек благодаря фиксации в них нефротропных РФП.  2.2. Эмиссионная компьютерная томография Однофотонная эмиссионная компьютерная томография (ОФЭКТ) особенно широко используется в кардиологической и неврологической практике. Метод основан на вращении вокруг тела пациента обычной гамма-камеры. Регистрация излучения в различных точках окружности позволяет реконструировать секционное изображение. Позитронная эмиссионная томография (ПЭТ), в отличие от других радионуклидных методов обследования, основывается на использовании испускаемых радионуклидами позитронов. Позитроны, имея одинаковую массу с электронами, заряжены положительно. Испускаемый позитрон сразу же взаимодействует с ближайшим электроном (эта реакция называется аннигиляцией), что приводит к возникновению двух гамма-фотонов, распространяющихся в противоположных направлениях. Эти фотоны регистрируются специальными детекторами. Информация затем передается на компьютер и преобразуется в цифровое изображение.  ПЭТ позволяет осуществлять количественную оценку концентрации радионуклидов и тем самым изучать метаболические процессы в тканях. 2.3. Радиография Радиография – метод оценки функции органа посредством внешней графической регистрации изменений радиоактивности над ним. В настоящее время этот метод применяется в основном для изучения состояния почек – радиоренография. Два сцинтиграфических детектора регистрируют излучение над правой и левой почками, третий – над сердцем. Проводят качественный и количественный анализ полученных ренограмм. 3. Ультразвуковые методы исследования Под ультразвуком подразумевают звуковые волны с частотой свыше 20000 Гц, т.е. выше порога слышимости человеческого уха. Ультразвук используется в диагностике для получения секционных изображений (срезов) и измерения скорости тока крови. Наиболее часто в радиологии используются частоты в диапазоне 2-10 МГц (1 Мгц = 1 миллион Гц). Методику ультразвуковой визуализации называют сонографией. Технологию измерения скорости кровотока называют допплерографией.  Цель (общая) изучения данного раздела: научиться интерпретировать принципы получения ультразвукового изображения и предназначение различных ультразвуковых методов исследования. Для этого необходимо уметь:  1) интерпретировать принципы получения информации при сонографии и допплерографии; 2) трактовать предназначение сонографии и допплерографии. 3.1. Сонография Сонография осуществляется пропусканием через тело пациента узконаправленного ультразвукового луча. Ультразвук генерируется специальным датчиком, обычно помещаемым на кожу пациента над обследуемой анатомической областью. Датчик содержит один или несколько пьезоэлектрических кристаллов. Подача электрического потенциала на кристалл приводит к его механической деформации, а механическое сжатие кристалла генерирует электрический потенциал (обратный и прямой пьезоэлектрический эффект). Механические колебания кристалла генерируют ультразвук, который отражается от различных тканей и возвращается назад к датчику в виде эха, генерирует механические колебания кристалла и, следовательно, электрические сигналы той же частоты, что и эхо. В таком виде эхо записывается. Интенсивность ультразвука постепенно уменьшается с прохождением через ткани тела пациента. Основной причиной этого является поглощение ультразвука в виде тепла.  Непоглощенная часть ультразвука может быть рассеяна или отражена тканями назад к датчику в виде эха. Легкость прохождения ультразвука через ткани частично зависит от массы частиц (которая определяет плотность ткани) и частично — от сил эластичности, притягивающих частицы друг к другу. Плотность и эластичность ткани вместе определяют ее так называемое акустическое сопротивление. Чем больше изменение акустического сопротивления, тем больше отражение ультразвука. Большое различие в акустическом сопротивлении существует на границе мягкая ткань — газ, и почти весь ультразвук отражается от нее. Поэтому для устранения воздуха между кожей пациента и датчиком применяется специальный гель. По этой же причине сонография не позволяет визуализировать области, расположенные за кишечником (так как кишечник заполнен газом), и содержащую воздух легочную ткань. Существует также и относительно большое различие в акустическом сопротивлении между мягкими тканями и костями. Большинство костных структур, таким образом, препятствует проведению сонографии. Простейший способ отображения записанного эха — так называемый А-режим (амплитудный режим). В данном формате эхо с различной глубины представляется в виде вертикальных пиков на горизонтальной линии, отражающей глубину. Сила эха определяет высоту или амплитуду каждого из показанных пиков. А-режимный формат дает только одномерное изображение изменения акустического сопротивления вдоль линии прохождения ультразвукового луча и крайне ограниченно используется в диагностике (в настоящее время - только для исследования глазного яблока). Альтернативой А-режиму является М-режим (М — motion, движение). На таком изображении ось глубины на мониторе ориентируется вертикально. Различные эхосигналы отражаются в виде точек, яркость которых определяется силой эха. Эти яркие точки перемещаются поперек экрана слева направо, создавая таким образом яркие кривые, показывающие изменение положения отражающих структур с течением времени. Кривые М-режима предоставляют детальную информацию о динамике поведения расположенных вдоль ультразвукового луча отражающих структур. Данный метод используется для получения динамических одномерных изображений сердца (стенок камер и створок сердечных клапанов). Наиболее широко в радиологии используется В-режим (В — brightness, яркость). Данный термин означает, что эхо изображается на экране в виде точек, яркость которых определяется силой эха. В-режим дает двухмерное секционное анатомическое изображение (срез) в реальном масштабе времени. На экране создаются изображения в виде прямоугольника или сектора. Изображения динамичны, на них можно наблюдать такие явления, как респираторные движения, пульсация сосудов, сердечные сокращения и движения плода. Современные аппараты для ультразвуковых исследований используют цифровые технологии. Генерируемый в датчике аналоговый электрический сигнал оцифровывается. Окончательное изображение на мониторе представлено оттенками серой шкалы. Более светлые участки при этом называются гиперэхогенными, более темные – гипо- и анэхогенными. 3.2. Допплерография Измерение скорости кровотока с использованием ультразвука основано на физическом явлении, согласно которому частота звука, отраженного от движущегося объекта, изменяется по сравнению с частотой посланного звука при ее восприятии неподвижным приемником (допплеровский эффект). При допплеровском исследовании кровеносных сосудов через тело пропускается генерируемый специальным допплеровским датчиком ультразвуковой луч. При пересечении этим лучом сосуда или сердечной камеры небольшая часть ультразвука отражается от эритроцитов. Частота волн эха, отраженного от этих клеток, движущихся в направлении датчика, будет выше, чем у волн, испускаемых им самим. Разница между частотой принятого эха и частотой генерируемого датчиком ультразвука называется допплеровским частотным сдвигом, или допплеровской частотой. Данный частотный сдвиг прямо пропорционален скорости кровотока. При измерении потока частотный сдвиг непрерывно измеряется прибором; большинство подобных систем автоматически преобразует изменение частоты ультразвука в относительную скорость кровотока (например, в м/с), используя которую можно вычислить истинную скорость кровотока. Допплеровский частотный сдвиг обычно лежит в пределах различимого человеческим ухом диапазона частот. Поэтому вся допплерографическая аппаратура оборудована динамиками, позволяющими слышать допплеровский частотный сдвиг. Этот "звук кровотока" используется как для обнаружения сосудов, так и для полуколичественной оценки характера тока крови и его скорости. Однако такое звуковое отображение мало пригодно для точной оценки скорости. В связи с этим при допплеровском исследовании обеспечивается визуальное отображение скорости потока - обычно в виде графиков или в форме волн, где по оси ординат отложена скорость, а по оси абсцисс — время. В случаях, когда ток крови направлен к датчику, график допплерограммы располагается над изолинией. Если ток крови направлен от датчика, график располагается под изолинией.  Существует два принципиально различных варианта излучения и приема ультразвука при использовании допплеровского эффекта: постоянноволновой и импульсный. В постоянноволновом режиме допплеровский датчик использует два отдельных кристалла. Один кристалл непрерывно излучает ультразвук, а другой — принимает эхо, что позволяет измерять очень большие скорости. Поскольку происходит одновременное измерение скоростей на большом диапазоне глубин, невозможно выборочно измерить скорость на определенной, заранее заданной глубине.  В импульсном режиме один и тот же кристалл излучает и принимает ультразвук. Ультразвук испускается короткими импульсами, а эхо регистрируется в периоды ожидания между передачами импульсов. Интервал времени между передачей импульса и приемом эха определяет глубину, на которой измеряются скорости. Импульсный допплер позволяет измерять скорости потоков в очень малых объемах (в так называемых контрольных объемах), расположенных вдоль ультразвукового луча, но наибольшие скорости, доступные для измерения, значительно ниже тех, которые можно измерить, используя постоянноволновой допплер. В настоящее время в радиологии используют так называемые дуплексные сканеры, которые объединяют в себе сонографию и импульсную допплерографию. При дуплексном сканировании направление допплеровского луча накладывается на изображение в В-режиме, и таким образом можно, используя электронные маркеры, выбрать размер и расположение контрольного объема вдоль направления луча. При перемещении электронного курсора параллельно направлению тока крови автоматически измеряется допплеровский сдвиг и показывается истинная скорость потока.  Цветная визуализация кровотока — дальнейшее развитие дуплексного сканирования. Цвета накладываются на изображение в В-режиме, показывая наличие перемещающейся крови. Неподвижные ткани отображаются оттенками серой шкалы, а сосуды — цветной (оттенками голубого, красного, желтого, зеленого, определяемыми относительной скоростью и направлением кровотока). Цветное изображение дает представление о наличии различных сосудов и потоков крови, но обеспечиваемая данным методом количественная информация менее точна, чем при постоянноволновом или импульсном допплеровском исследовании. Поэтому цветная визуализация кровотока всегда комбинируется с импульсной допплерографией. 4. Магнитно-резонансные методы исследования Цель (общая) изучения данного раздела: научиться интерпретировать принципы получения информации при магнитно-резонансных методов исследования и трактовать их предназначение. Для этого необходимо уметь:  1) интерпретировать принципы получения информации при магнитно-резонансной томографии и магнитно-резонансной спектроскопии; 2) трактовать предназначение магнитно-резонансной томографии и магнитно-резонансной спектроскопии. 4.1. Магнитно-резонансная томография Магнитно-резонансная томография (МРТ) — самый «молодой» из радиологических методов. Магнитно-резонансные томографы позволяют создать изображения сечений любой части тела в трех плоскостях.  Основными компонентами МР-томографа являются сильный магнит, радиопередатчик, приемная радиочастотная катушка и компьютер. Внутренняя часть магнита представляет собой цилиндрической формы туннель, достаточно большой для размещения внутри него взрослого человека. Для МР-томографии используются магнитные поля силой от 0,02 до 3 Тл (тесла). Большинство МР-томографов имеют магнитное поле, ориентированное параллельно длинной оси тела пациента.  Когда пациента помещают внутрь магнитного поля, все ядра водорода (протоны) его тела разворачиваются в направлении этого поля (подобно стрелке компаса, ориентирующейся на магнитное поле Земли). Помимо этого, магнитные оси каждого протона начинают вращаться вокруг направления внешнего магнитного поля. Это вращательное движение называют прецессией, а его частоту — резонансной частотой.  Большинство протонов ориентировано параллельно внешнему магнитному полю магнита ("параллельные протоны"). Остальные прецессируют антипараллельно внешнему магнитному полю ("антипараллельные протоны"). В результате ткани пациента намагничиваются, и их магнетизм ориентируется точно параллельно внешнему магнитному полю. Величина магнетизма определяется избытком параллельных протонов. Избыток пропорционален силе внешнего магнитного поля, но всегда он крайне мал (порядка 1-10 протонов на 1 миллион). Магнетизм также пропорционален числу протонов в единице объема ткани, т.е. плотности протонов. Огромное число (примерно 1022 в мл воды) содержащихся в большинстве тканей ядер водорода обусловливает магнетизм, достаточный для того, чтобы индуцировать электрический ток в воспринимающей катушке. Но обязательным условием индуцирования тока в катушке является изменение силы магнитного поля. Для этого необходимы радиоволны. При пропускании через тело пациента коротких электромагнитных радиочастотных импульсов магнитные моменты всех протонов разворачиваются на 90º, но только в том случае, если частота радиоволн равна резонансной частоте протонов. Это явление и называют магнитным резонансом (резонанс - синхронные колебания).  Воспринимающая катушка расположена вне пациента. Магнетизм тканей индуцирует в катушке электрический ток, и этот ток называют МР-сигналом. Ткани с большими магнитными векторами индуцируют сильные сигналы и выглядят на изображении яркими - гипертинтенсивными, а ткани с малыми магнитными векторами индуцируют слабые сигналы и на изображении выглядят темными – гипоинтенсивными. Как было сказано ранее, контраст на МР-изображениях определяется различиями в магнитных свойствах тканей. Величина магнитного вектора, прежде всего, определяется плотностью протонов. Объекты с малым количеством протонов, например, воздух, индуцируют очень слабый МР-сигнал и представляются на изображении темными. Вода и другие жидкости должны быть яркими на МР-изображениях как имеющие очень высокую плотность протонов. Однако, в зависимости от режима, используемого для получения МР-изображения, жидкости могут давать как яркие, так и темные изображения. Причина этого в том, что контрастность изображения определяется не только плотностью протонов. Определенную роль играют и другие параметры; два наиболее важных из них — Т1 и Т2. Для реконструкции изображения необходимо несколько МР-сигналов, т.е. через тело пациента должно быть передано несколько радиочастотных импульсов. В промежутке между подачей импульсов протоны подвергаются двум различным процессам релаксации — Т1 и Т2. Быстрое затухание индуцированного сигнала — частично результат Т2-релаксации. Релаксация — это последствие постепенного исчезновения намагниченности. Жидкости и подобные жидкостям ткани обычно имеют длительное время Т2, а твердые ткани и вещества — короткое время Т2. Чем длиннее Т2, тем ярче (светлее) выглядит ткань, т.е. дает более интенсивный сигнал. МР-изображения, в которых контрастность преимущественно определяется различиями в Т2, называют Т2-взвешенными изображениями.  T1-релаксация — более медленный по сравнению с Т2-релаксацией процесс, заключающийся в постепенном выстраивании отдельных протонов вдоль направления магнитного поля. Таким образом восстанавливается предшествующее радиочастотноному импульсу состояние. Величина Т1 в значительной мере зависит от размера молекул и их мобильности. Как правило, Т1 минимально для тканей с молекулами среднего размера и средней мобильности, например, для жировой ткани. Меньшие, более мобильные молекулы (как в жидкости) и большие, менее мобильные молекулы (как в твердых телах) имеют более высокое значение Т1. Ткани с минимальным Т1 будут индуцировать наиболее сильные МР-сигналы (например, жировая ткань). Таким образом, эти ткани будут на изображении яркими. Ткани с максимальным Т1 будут, соответственно, индуцировать наиболее слабые сигналы и будут темными. МР-изображения, в которых контрастность преимущественно определяется различиями в Т1, называют Т1-взвешенными изображениями.  Различия в силе МР-сигналов, полученных от различных тканей сразу после воздействия радиочастотного импульса, отражают различия в плотности протонов. На изображениях, взвешенных по протонной плотности, ткани с максимальной плотностью протонов индуцируют наиболее сильный МР-сигнал и выглядят самыми яркими.  Таким образом, в МРТ существует значительно больше возможностей для изменения контрастности изображений, чем в альтернативных методиках – таких, как компьютерная томография и сонография.  Как уже упоминалось, радиочастотные импульсы индуцируют МР-сигналы только в том случае, если частота импульсов точно соответствует резонансной частоте протонов. Данный факт позволяет получать МР-сигналы из выбранного заранее тонкого слоя тканей. Специальные катушки создают небольшие дополнительные поля таким образом, что сила магнитного поля линейно увеличивается в одном направлении. Резонансная частота протонов пропорциональна силе магнитного поля, поэтому она также будет увеличиваться линейно в этом же направлении. Подавая радиочастотные импульсы с установленным заранее узким диапазоном частот, можно записывать МР-сигналы только от тонкого слоя ткани, диапазон резонансных частот которого соответствует диапазону частот радиоимпульсов.  В МР-томографии интенсивность сигнала от неподвижной крови определяется выбранной "взвешенностью" изображения (на практике неподвижная кровь в большинстве случаев визуализируется яркой). В отличие от нее циркулирующая кровь практически не генерирует МР-сигнал, являясь, таким образом, эффективным «негативным» контрастным средством. Просветы сосудов и камеры сердца отображаются темными и четко отграничиваются от окружающих их более ярких неподвижных тканей. Существуют, однако, специальные методики МРТ, позволяющие отобразить циркулирующую кровь яркой, а неподвижные ткани — темными. Они используются в МР-ангиографии (МРА).  При МРТ широко используются контрастные средства. Все они обладают магнитными свойствами и изменяют интенсивность изображения тканей, в которых они находятся, укорачивая релаксацию (Т1 и/или Т2) окружающих их протонов. Наиболее часто используемые контрастные средства содержат парамагнитный ион металла гадолиния (Gd3+), связанный с молекулой-носителем. Эти контрастные средства вводятся внутривенно и распределяются в организме подобно водорастворимым рентгенконтрастным средствам. 4.2. Магнитно-резонансная спектроскопия МР-установка с силой магнитного поля не менее 1,5 Тл позволяет проводить магнитно-резонансную спектроскопию (МРС) in vivo. МРС основывается на том факте, что находящиеся в магнитном поле атомные ядра и молекулы вызывают локальные изменения в силе поля. Ядра атомов одного и того же типа (например, водорода) имеют резонансные частоты, слегка варьирующие в зависимости от молекулярного расположения ядер. Индуцируемый после воздействия радиочастотного импульса МР-сигнал будет содержать эти частоты. В результате частотного анализа сложного МР-сигнала создается частотный спектр, т.е. амплитудно-частотная характеристика, показывающая имеющиеся в нем частоты и соответствующие им амплитуды. Такой частотный спектр может предоставить информацию о наличии и относительной концентрации различных молекул. В МРС могут использоваться несколько видов ядер, но два наиболее часто исследуемых — это ядра водорода (1Н) и фосфора (31Р). Возможна комбинация МР-томографии и МР-спектроскопии. МРС in vivo позволяет получать информацию о важных метаболических процессах в тканях, но этот метод до сих пор еще далек от повседневного применения в клинической практике. Общие принципы выбора оптимального лучевого метода исследования Цель изучения данного раздела соотвествует его названию - научиться трактовать общие принципы выбора оптимального лучевого метода исследования.  Как показано в предыдущих разделах, существует четыре группы лучевых методов исследования – рентгенологические, ультразвуковые, радионуклидные и магнитно-резонансные. Для эффективного использования их в диагностике различных заболеваний врачу-лечебнику необходимо уметь выбрать из этого множества методов оптимальный для конкретной клинической ситуации. При этом следует руководствоваться такими критериями, как: 1) информативность метода; 2) биологическое действие излучений, применяемых при этом методе; 3) доступность и экономичность метода. Информативность лучевых методов исследования, т.е. их способность обеспечить врача информацией о морфологическом и функциональном состоянии различных органов, является основным критерием выбора оптимального лучевого метода исследования и будет подробно освещена в разделах второй части нашего учебника. Сведения о биологическом действии излучений, применяемых при том или другом лучевом методе исследования, относятся к исходному уровню знаний-умений, осваиваемых в курсе медицинской и биологической физики. Однако, учитывая важность этого критерия при назначении пациенту лучевого метода, следует подчеркнуть, что все рентгенологические и радионуклидные методы связаны с ионизирующими излучениями и соответственно вызывают ионизацию в тканях организма пациента. При правильном выполнении этих методов и соблюдении принципов радиационной безопасности они не представляют угрозы здоровью и жизни человека, т.к. все обусловленные ими изменения являются обратимыми. В то же время необоснованно частое их применение может привести к увеличению суммарной дозы облучения, полученной пациентом, возрастанию риска возникновения опухолей и развитию в его организме местных и общих лучевых реакций, о которых вы подробно узнаете из курсов лучевой терапии и радиационной гигиены. Основным биологическим эффектом при проведении ультразвуковых исследований и магнитно-резонансной томографии является нагревание. Более выражен этот эффект при МРТ. Поэтому первые три месяца беременности некоторыми авторами расцениваются как абсолютное противопоказание для МРТ из-за риска перегревания плода. Еще одним абсолютным противопоказанием к применению этого метода является наличие ферромагнитного объекта, перемещение которого может быть опасным для пациента. Наиболее важными являются внутричерепные ферромагнитные клипсы на сосудах и внутриглазные ферромагнитные инородные тела. Наибольшая связанная с ними потенциальная опасность - кровотечение. Наличие кардиостимуляторов также является абсолютным противопоказанием для МРТ. На функционирование этих приборов может повлиять магнитное поле, и, более того, в их электродах могут индуцироваться электрические токи, способные нагреть эндокард. Третий критерий выбора оптимального метода исследования – доступность и экономичность – явлется менее важным, чем первые два. Однако, направляя пациента на обследование, любой врач должен помнить, что начинать следует с более доступных, распространенных и менее дорогих методов. Соблюдение этого принципа, прежде всего, - в интересах пациента, которому диагноз будет установлен в более короткий срок. Таким образом, при выборе оптимального лучевого метода исследования врач должен, главным образом, руководствоваться его информативностью, а из нескольких методов, близких по информативности, назначить более доступный и обладающий меньшим воздействием на организм пациента. Роль лучевой диагностики в подготовке врача и в медицинской практике все возрастает. Это связано с созданием диагностических центров, с вводом в строй крупных городских, областных и республиканских больниц, оснащенных новейшей аппаратурой, с развертыванием сети межрайонных больниц со специализированными отделениями. Это объясняется также быстрыми успехами компьютерной рентгеновской и магнитно-резонансной томографии, ультразвуковых и радионуклидных исследований.

    Указанные обстоятельства ведут к созданию новой системы медицинской диагностики, существенную часть которой составляет лучевая диагностика, открывающая небывалые прежде возможности углубленного исследования органов путем получения их изображений (medical imaging) с помощью различных полей и излучений.

    В) Лучевая терапия

    Лучевая терапия - метод лечения опухолевых и ряда неопухолевых заболеваний с помощью ионизирующих излучений. Такое излучение создается с помощью специальных аппаратов, в которых используется радиоактивный источник. Эффект лучевой терапии основан на повышенной чувствительности раковых клеток к ионизирующему излучению. Под действием этого излучения в клетках развивается огромное количество мутаций, и они погибают. При этом нормальные клетки организма не подвергаются таким изменениям, так как более устойчивы к облучению. Гибель опухоли происходит также за счет специальной методики облучения, когда лучи подводятся к опухоли с разных сторон. В результате в опухоли накапливается максимальная доза.

    Лучевая терапия является одним из трех ведущих методов лечения онкологических заболеваний. Наравне с хирургическим и лекарственным методом лечения, лучевая терапия позволяет добиться при некоторых заболеваниях полного излечения, например, при лимфогранулематозе. При ряде заболеваний лучевая терапия дополняет химиотерапию и хирургическое лечение, улучшая результат. Например, при раке молочной железы, при раке прямой кишки, при раке легкого и др. При ряде заболеваний лучевая терапия избавляет больного от мучительных симптомов заболевания. Например, при метастазах рака в кости уменьшаются боли. Лучевая терапия используется и в лечении неопухолевых заболеваний. Так, например, ранее рентгенотерапия использовалась как способ эпиляции и лечения повышенной потливости. Сегодня этот вид лечения часто используется для лечения пяточных шпор.

    Ионизирующее излучение является небезопасным для здоровых тканей, поэтому облучение проводится в несколько сеансов. При необходимости проводят облучение с нескольких точек, таким образом, чтобы здоровые ткани получали минимум дозы, а опухоль максимум.

    Лучевая терапия всегда начинается с планирования. Для этого выполняется ряд рентгенологических исследований, при которых определяется точное месторасположение опухоли. С помощью такой методики удается направить ионизирующее излучение точно на опухоль. Существует несколько видов лучевой терапии. Прежде всего, они делятся по виду излучения - рентгентерапия и гамматерапия. По расположению источника относительно тела человека существует дистанционное облучение (на расстоянии), контактное, внутриполостное. Излучение может подводиться непосредственно к опухоли с помощью тонких игл (внутритканевое облучение). Во время сеанса пациент не испытывает боли и каких-либо других ощущений. Облучение проходит в специально оборудованном помещении. Медсестра помогает больному занять положение, которое было выбрано во время планирования (разметки). С помощью специальных блоков защищают от облучения здоровые органы и ткани. После этого начинается сеанс, который длится от 1 до 5 минут. Врач наблюдает за процедурой из кабинета, имеющего визуальное сообщение с помещением, где проводится облучение.

     Побочные эффекты лучевой терапии

    При дистанционном облучении может возникать сухость кои, шелушение, зуд, краснота, появления мелких пузырьков. Для предупреждения и лечения такой реакции используются мази, аэрозоль "Пантенол", кремы и лосьоны для ухода за детской кожей.

    • При облучении опухолей головы и шеи может отмечаться выпадение волос, нарушение слуха, ощущение тяжести в голове.

    • При лучевой терапии опухолей лица и шеи может отмечаться сухость во рту, першение в горле, боли при глотании, осиплость голоса, потеря аппетита. Для предотвращения и усиления подобных реакций рекомендуется не употреблять острую, соленую, кислую и грубую пищу. Полезна пища, приготовленная на пару, вареная, измельченная или протертая. Питание должно быть частым и небольшими порциями. Рекомендуется употреблять больше жидкости (кисели, фруктовые компоты, отвар шиповника, некислый клюквенный морс). Для уменьшения сухости и першения в горле используется отвар ромашки, календулы, мяты. Рекомендуется закапывать в нос масло облепихи на ночь. Днем принимать несколько ложек растительного масла натощак. Зубы следует чистить мягкой зубной щеткой.

    • При облучении органов грудной полости могут возникать боли и затруднение при глотании, сухой кашель, одышка, болезненность мышц.

    • При облучении молочной железы может отмечаться болезненность мышц, припухлость и болезненность молочной железы, воспалительная реакция кожи в области облучения. Иногда отмечается кашель, воспалительные явления со стороны горла. За кожей следует ухаживать по вышеописанной методике.

    • При облучении опухолей органов брюшной полости может отмечаться потеря аппетита, снижение веса, тошнота и рвота, понос, боли. При облучении органов малого таза побочными эффектами являются тошнота, потеря аппетита, понос, нарушение мочеиспускания, боли в прямой кишке, сухость влагалища и выделения. Для устранения этих явлений рекомендуется диетическое питание. Кратность приемов пищи следует увеличить. Пища должна быть отварной или приготовленной на пару. Не рекомендуются острые, копченые, соленые блюда. При вздутии живота следует отказаться от молочных продуктов, рекомендуются протертые каши, супы, кисели, паровые блюда, пшеничный хлеб. Потребление сахара следует ограничить. Сливочное мало рекомендуется класть в готовые блюда.

    • При лучевой терапии следует носить свободную одежду, которая не стесняет место, где проводится облучение, не натирает кожу. Нательное белье должно быть из льна или хлопка. Для мытья следует использовать теплую воду и мыло.

    Обычно дистанционное облучение длится 3-4 недели. Внутриполостное облучение занимает меньше времени. Существует методика, при которой за один сеанс дают большую дозу, однако общая доза за курс меньше (при равном эффекте). В таких случаях облучение проводится в течение 3-4 дней. При лучевой терапии, особенно при сочетании ее с химиотерапией, нередко отмечается нейтропения - снижение уровня лейкоцитов - защитных клеток крови. Лучевая терапия редко является причиной возникновения вторичных опухолей. Обычно такие опухоли возникают через 10-20 лет после облучения. Как правило, вторичные опухоли появляются после проведения лучевой терапии в высоких дозах. В целом при лучевой терапии редко встречаются летальные осложнения.

    Лучевая терапия располагает в настоящее время большим набором источников квантового и корпускулярного излучений, обеспечивающих облучение нужного объема тканей в нужной дозе. Поэтому лучевая терапия стала важной частью комплексного лечения злокачественных опухолей, а лучевые терапевты работают в тесном контакте с онкологами, хирургами и химиотерапевтами. Без радиологии сегодня не могут обойтись никакие медицинские дисциплины. Лучевые методы широко используют в анатомии (рентгеноанатомия), физиологии (рентгенофизиология), биохимии (радиационная биохимия). Изучением действия ионизирующих излучений на живые объекты занимается радиобиология. В связи с развитием ядерных технологий и расширяющимся применением излучений в медицинской практике, народном хозяйстве и научных исследованиях все большее значение приобретает радиационная гигиена. К смежным специальностям относятся также все основные клинические дисциплины: кардиология, пульмонология, гастроэнтерология, остеопатология, эндокринология и т. д. Это и понятно. Уже давно не найти области изолированного использования законов и методов патологической анатомии и физиологии, терапии и хирургии, стоматологии и радиологии — есть лишь сфера их взаимного сопряженного коллективного действия.В этом содружестве дисциплин медицинская радиология занимает обширную территорию.
    1   2   3


    написать администратору сайта