1. Развитие и общая морфофункциональная харка нервной системы. Понятие о рефлекторной дуге, сером и белом вещве, типах нервных центров, нарушения формирования нервных центров, дизрафия
Скачать 101.64 Kb.
|
Клетки—столбы внутренние и наружные ограничивают внутренний туннель. В их базальном конце располагаются круглые ядра, апикальные концы внутренних клеток соединяются с концами наружных, образуя внутренний туннель. Покровная мембрана представляет собой соединительнотканную пластинку, состоящую из радиально направленных коллагеновых волокон, погруженных в аморфный матрикс. Внутренний край покровной мембраны прикрепляется к спиральному гребешку, наружный – свободно нависает над спиральным органом. При колебании спирального органа волоски (стереоцилии) волосковых клеток прикасаются к покровной мембране, что способствует возникновению звукового импульса. Высокие звуки раздражают только волосковые клетки, расположенные в нижних завитках улитки, а низкие звуки—кл.вершины улитки. ИННЕРВАЦИЯ. На сенсорных эпителиоцитах спирального и вестибулярного органа расположены афферентные нервн.оконч-я, образуют спиральный ганглий. Большая часть нейронов представляет крупные биполярные кл., другие мелкие псевдоуниполярные нейроны. Нейроны первого типа получают афферентную информацию исключительно от внутренних сенсоэпителиальных кл., а другие от наружных. ТЕОРИИ СЛУХА. Резонансная теория Гельмгольца. Механоэлектрическая теория Дэвиса. Цитохимическая теория Винникова. Теория Гельмгольца. Исходя из строения периферического слухового аппарата, Гельмгольц предложил свою резонансную теорию слуха, согласно которой отдельные части основной мембраны - «струны» колеблются при действии звуков определенной частоты. Чувствительные клетки кортиева органа воспринимают эти колебания и передают по нерву слуховым центрам. При наличии сложных звуков одновременно происходит колебание нескольких участков. Таким образом, согласно резонансной теории слуха Гельмгольца, восприятие звуков разных частот происходит в разных участках улитки, а именно, по аналогии с музыкальными инструментами, звуки высокой частоты вызывают колебания коротких волокон у основания улитки, а низкие звуки приводят в колебательные движения длинные волокна у верхушки улитки. Теория Дэвиса. Суть: гидромеханические колебания перилимфы передаются на эндолимфу и текториальная мембрана деформирует стереоцилии волосковых клеток. Это вызывает биопотенциал в сенсорных клетках, высвобождение медиатора и возникновение ПД в афферентном нервном волокне. Возникающая электр.реакция, названная микрофонным эффектом, по форме повторяет звуковой сигнал. Обобщенная цепочка звуковой передачи:Наруж.слух.проходбараб.перепонкамолоточекнаковальнястремечкомемб.овального окнаперилимфа вестибулярной лестницыгеликотремаперилимфа бараб.лестницкруглое окноколебания базиляр.и текториальной, вестибуляр. мембраныдеформация стереоцилий волосковых клетоквозбуждение волосковых клетокэл.потенциалвыделение медиатора АХпотенциалы аффер.нерваЦНС. 22. Взаимодействие слух.пузырьков с нервными ганглиями в эмбриогенезе, эндокохлеарная трансплантация. У млекопитающих и человека рецепторные клетки органа слуха и равновесия располагаются во внутреннем ухе в перепончатом лабиринте, ограниченном костным лабиринтом. При этом волосковые сенсорные эпителиоциты органа слуха находятся в улитковом лабиринте, в спиральном органе улитки, а рецепторы органа равновесия — в вестибулярном лабиринте — в пятнах мешочков и гребешках полукружных каналов. В процессе эмбриогенеза перепончатый лабиринт внутреннего уха закладывается из парных утолщений эктодермы (слуховые и лабиринтные плакоды). Они погружаются в подлежащую мезенхиму и превращаются в слуховые пузырьки. Дифференцировка слуховых пузырьков приводит к разделению на два зачатка — органа равновесия и органа слуха. Одновременно слуховой пузырек контактирует с эмбриональным слуховым нервным ганглием, который также делится на две части — ганглий преддверия и ганглий улитки. ЭНДОКОХЛЕАРНАЯ ТРАНСПЛАНТАЦИЯ. Восстановление функции слухового анализатора при нейросенсорной глухоте эндокохлеарной пересадкой эмбриональных стволовых нервных клеток. Нейросенсорная тугоухость —это потеря слуха, вызванная поражением структур внутреннего уха, преддверно-улиткового нерва (VIII), или центральных отделов слухового анализатора (в стволе и слуховой коре головного мозга). Нейросенсорная тугоухость подразделяется на — кохлеарную тугоухость, обусловленную поражениями внутреннего уха (акустическая травма, вирусная инфекция, прием ототоксичных препаратов, перелом височной кости, менингит, отосклероз улитки, синдром Меньера, возрастные изменения) и ретрокохлеарную тугоухость, связанную с поражениями путей слуховой системы и поражением центров слуховой системы (чаще всего - шваннома преддверно-улиткового нерва и другие опухоли мостомозжечкового угла, сосудистые заболевания, демиелинизирующие заболевания, дегенеративные заболевания и травмы). Австралийские ученые нашли способ восстановить слух при кохлеарной тугоухости с помощью стволовых клеток слизистой оболочки носа. Исследователи намеревались предотвратить потерю слуха, пересадив в улитку стволовые клетки. В ходе экспериментов на лабораторных мышах половине животных были пересажены стволовые клетки, полученные из слизистой оболочки носа. Слух грызунов измеряли по минимальному уровню звукового сигнала, на который реагирует их мозг. По результатам исследования, через месяц после трансплантации мыши с пересаженными в улитку стволовыми клетками воспринимали значительно более тихие звуки, чем животные из контрольной группы. 23. ВЕСТИБУЛЯРНЫЙ ЛАБИРИНТ, пятно мешочка и маточки, ампулярный гребешок. Вестибулярная часть перепончатого лабиринта. Это место расположения рецепторов органов равновесия. Она состоит из 2-х мешочков—эллиптического (маточки), круглого, сообщающихся при помощи узкого канала и связанных с 3-мя полукружными каналами. Эти каналы на месте соединения их с эллиптическими мешочками имеют расширения—ампулы. В стенке перепончатого лабиринта в области эллиптического и сферического мешочков и ампул есть участки, содержащие чувствительные кл. В мешочках эти клетки называются пятнами, в ампулах—гребешками. Стенка вестибулярной части перепончатого лабиринта состоит из однослойного плоского эпителия, за исключением—крист и мешочков(там кубич. и призмат.эпителий) Пятна мешочков и маточки. Эти пятна выстланы эпителием, расположенным на БМ и состоящим из сенсорных и опорных кл. Поверхность эпителия покрыта особой студенистой отолитовой мембраной, в которую включены отолиты, или статоконии. Макула эллипт.мешочка—место восприятия линейных ускорений и земного притяжения. Макула сфер.мешочка, яв-ся рецептором гравитации, воспринимая при этом вибрационный колебания. Ампулярные гребешки. Они в виде поперечных складок нах-ся в каждом ампулярном расширении полукружного канала. Ампулярный гребешок выстлан сенсорными волосковыми и подд-ми эпителиоцитами. Апикальная часть этих кл.окружена желатинозным прозрачным куполом. Функционально, купол—рецептор угловых ускорений. Волосковые сенсорные кл. непосредственно обращены своими вершинами, усечёнными волосками, в полость лабиринта. По строению волосковые кл.подразделены на 2 типа:
24. ОРГАН ОБОНЯНИЯ и ВКУСА. РАЗВИТИЕ:Основной орган обоняния имеет эктодермальное положение и развивается из плакод(утолщения передней части эктодермы головы). Из плакод формируются обонятельные ямки. У зародышей человека на 4-м месяце формируются поддерживающие эпителиоциты и нейросенорные обонятельные кл. Вомероназальный орган формируется в виде парной закладки на 6-й нед.из эпителия нижней части перегородки носа. К 7-ой неделе заканчивается формирование полости вомероназального органа. На 21-ой нед.развития уже имеются опорные кл.с ресничками и рецепторные кл. СТРОЕНИЕ:основной орган обоняния состоит из пласта многорядного эпителия, в котором различают обонятельные нейросенсорные кл., поддерживающие и базальные эпителиоциты. От соед.тк они отделены БМ.
Вомероназальный орган. Эпителий его состоит из рецепторной и респираторной частей. Рецепторная часть по строению сходна с обонятельным эпителием основного органа обоняния. Главное отличие в том, что обонят.булавы несут на поверхности не реснички, а неподвижные микроворсинки. Возрастные изменения:Чаще всего они обусловлены перенесенными в течение жизни воспалительными процессами(риниты, которые приводят к атрофии рецепторных клеток и разрастанию респираторного эпителия. Регенерация: обновление рецепторных обонятельных клеток происходит в течение 30 суток. В конце жизненного цикла нейроны подвергаются деструкции. Малодиф-ые нейроны базального слоя способны к митотическому делению, лишены отростков. К концу дифференцировки увеличен объем кл., появился спец.отросток-дендрит, растущий к поверхности, и аксон, растущий в сторону БМ. Кл.постепенно перемещаются к поверхности, замещая погибшие нейроны. ОРГАН ВКУСА Развитие: источником развития кл.вкусовых почек яв-ся эмбриональный многослойный эпителий сосочков. Он подвергается диф-ке под воздействием окончаний нервных волокон нервов. Строение:каждая вкусовая почкаимеет эллипсоидную форму, занимает всю толщу многослойного эпителиального пласта сосочка. Она состоит из плотно прилегающих др к др кл., среди которых различают 5 видов:
Регенерация: Сенсорные и подд-ие эпителиоциты вкусовой почки непрерывно обновляются. Продолжительность их жизни примерно 10 сут. 25. КОЖА. Нервный аппарат кожи представляет собой большое рецепторное поле. Чувствительные (афферентные) нервные волокна идут от кожных рецепторов, входят в состав черепных и спинно-мозговых нервов. Воспринимая раздражения из внешней среды, они подразделяются на механо-, хемо-, термо– и ноцирецепторы (болевые). Различают свободные (разветвленные) и инкапсулированные рецепторы кожи. Свободные нервные окончания наиболее важны в функциональном отношении; они представлены во всех отделах дермы короткими и длинными веточками, сопровождающимися шванновскимн клетками. Источником свободных нервных окончаний являются безмиелиновые нервные волокна. Большинство подобных волокон являются осязательными клетками Меркеля. Безмиелиновые нервные окончания в сосочковом слое дермы воспринимают ощущения боли, зуда и температуры. Инкапсулированные нервные окончания, состоящие из внутренней колбы и окружающей ее капсулы, выполняют специфические функции. Так, колбы Краузе, являющиеся механорецепторами, встречаются в субсосочковой зоне дермы кистей, плеч. предплечий, стоп и голеней; пластинчатые тельца Фатера—Пачини – в гладкой коже преимущественно пальцев, сосков молочных желез; осязательные тельца Мейснера – в коже ладоней, особенно пальцев, губ, век, половых органов, в сосках молочной желез, в сосочках языка. В кожу вступают многочисленные вегетативные нервные волокна, иннервирующие сосуды, гладкие мышцы и железы. Причем мякотные и безмякотные, чувствительные и вегетативные нервные волокна могут находиться в одном стволе. Крупные нервные стволы, поступающие в дерму из подкожной жировой клетчатки, образуют глубокое нервное сплетение на границе с подкожной жировой клетчаткой и поверхностное нервное сплетение – в нижнем отделе сосочкового слоя дермы. Отсюда отдельные нервные волокна и их небольшие пучки направляются в сосочки дермы, сосуды, придатки кожи и эпидермис. Подходя к эпидермису, тонкие нервные волокна теряют миелиновую оболочку и проникают в межклеточные канальцы базального и шиповатого слоев в виде голых осевых цилиндров. Миелинизированные (мякотные) нервные волокна (аксоны) встречаются в 5 раз чаще, чем немиелинизированные (безмякотные). К придаткам кожи относят сальные и потовые железы, волосы и ногти. 26. ЭПИДЕРМИС Наружная часть кожи, представлен многослойным плоским ороговевающим эпителием. Толщина его варьирует от 0,05 мм на веках до 1,5 мм на ладонях. Около 95% клеток эпидермиса являются кератиноцитами (производными эктодермы), которые по мере дифференцировки продвигаются от базальной мембраны по направлению к поверхности кожи. Эпидермис состоит из 5 слоев: базального, шиповатого, зернистого, блестящего и рогового. Основа эпидермиса – его самый внутренний базальный слой, состоящий из 1 ряда мелких клеток цилиндрической формы, располагающихся в виде частокола и называемых базальными кератиноцитами. Они имеют крупные темноокрашённые базофильные ядра и плотную цитоплазму, содержащую много рибосом и пучков тонофиламентов. Между собой клетки соединены межклеточными мостиками (десмосомами), а к базальной мембране крепятся полудесмосомами. Базальные кератиноциты синтезируют нерастворимый протеин, из которого образуются кератиновые филаменты, формирующие цитоскелет кератиноцитов и входящие в состав десмосом и полудесмосом. Митотическая активность клеток базального слоя (1 митоз на 400 клеток) обеспечивает формирование вышележащих структур эпидермиса. Непосредственно над базальным слоем кератиноциты увеличиваются в размере и формируют шиповатый слой, состоящий из 3—6 (иногда 15) рядов шиповатых кератиноцитов, постепенно уплощающихся к поверхности кожи. Клетки этого слоя имеют полигональную форму и также связаны между собой десмосомами. В клетках этого слоя тонофибрилл больше, чем в базальных кератиноцитах, они концентрически и сгущенно располагаются вокруг ядер и вплетаются в десмосомы. В цитоплазме шиповатых клеток имеются многочисленные округлые везикулы различного диаметра, канальцы цитоплазматической сети, а также меланосомы. Базальный и шиповатый слои называют ростковым слоем Мальпиги, так как в них встречаются митозы, причем в шиповатом – только при обширных повреждениях эпидермиса. За счет этого происходят формирование и регенерация эпидермиса. Зернистый слой состоит из 2-3 рядов клеток, имеющих вблизи шиповатого слоя цилиндрическую или кубическую форму, а ближе к поверхности кожи – ромбовидную. Ядра клеток отличаются заметным полиморфизмом, а в цитоплазме образуются включения – зерна кератогиалина. В нижних рядах зернистого слоя происходит биосинтез филагрина – основного белка кератогиалиновых зерен. Он обладает способностью вызывать агрегацию кератиновых фибрилл, образовывая таким образом кератин роговых чешуек. Вторая особенность клеток зернистого слоя – присутствие в их цитоплазме кератиносом, или телец Одланда, содержимое которых (гликолипиды, гликопротеиды, свободные стерины, гидролитические ферменты) выделяется в межклеточные пространства, где из него формируется пластинчатое цементирующее вещество. Блестящий слой виден в участках наиболее развитого эпидермиса, т. е. на ладонях и подошвах, где состоит из 3-4 рядов вытянутых по форме слабо контурированных клеток, содержащих элеидин, из которого в дальнейшем образуется кератин. Ядра в верхних слоях клеток отсутствуют. Роговой слой образован полностью ороговевшими безъядерными клетками – корнеоцитами (роговыми пластинками), которые содержат нерастворимый белок кератин. Корнеоциты соединяются друг с другом с помощью взаимопроникающих выростов оболочки и ороговевающих десмосом. В поверхностной зоне рогового слоя десмосомы разрушаются и роговые чешуйки легко отторгаются. Толщина рогового слоя зависит от скорости размножения и продвижения кератиноцитов в вертикальном направлении и скорости отторжения роговых чешуек. Наиболее развит роговой слой там, где кожа подвергается наибольшему механическому воздействию (ладони, подошвы). Эпителий слизистых оболочек, за исключением спинки языка и твердого неба, лишен зернистого и рогового слоев. Кератиноциты в этих участках в процессе миграции от базального слоя к поверхности кожи вначале выглядят вакуолизированными, главным образом за счет гликогена, а затем уменьшаются в размерах и в конечном итоге подвергаются десквамации. Кератиноциты слизистой оболочки рта имеют небольшое количество хорошо развитых десмосом и множество микроворсинок, сцепление клеток между собой осуществляется посредством аморфной межклеточной склеивающей субстанции, растворение которой приводит к разъединению клеток. Среди клеток базального слоя располагаются меланоциты – дендритические клетки, которые мигрируют в эмбриональном периоде из неврального гребешка в эпидермис, эпителий слизистых оболочек, волосяные фолликулы, дерму, мягкие мозговые оболочки, внутреннее ухо и некоторые другие ткани. Они синтезируют пигмент меланин. Отростки меланоцитов распространяются между кератиноцитами. Меланин накапливается в базальных кератиноцитах над апикальной частью ядра, образуя защитный экран от ультрафиолетового и радиоактивного излучения. У лиц с темной кожей он проникает также в клетки шиповатого, вплоть до зернистого, слоя. У людей выделяют два основных класса меланинов: эумеланины – производимые эллипсоидными меланосомами (эумеланосомами), придающие коже и волосам коричневый и черный цвет; феомеланины – продуцируемые сферическими меланосомами (феомеланосомами) и обусловливающие цвет волос от желтого до красно-коричневого. Цвет кожи зависит не от количества меланоцитов, которое примерно постоянно у людей разных рас, а от количества меланина в одной клетке. Загар после ультрафиолетового облучения обусловлен ускорением синтеза меланосом, меланизации меланосом, транспорта меланосом в отростки и передачи меланосом в кератиноциты. Уменьшение с возрастом количества и активности фолликулярных меланоцитов приводит к прогрессирующему поседению волос. В нижней части эпидермиса располагаются белые отростчатые клетки Лангерганса – внутриэпидермальные макрофаги, выполняющие антигенпредставляющую функцию для Т-хелперов. Антигенпредставляющая функция этих клеток осуществляется путем захвата антигенов из внешней среды, переработки их и экспрессии на своей поверхности. В комплексе с собственными молекулами НLА-DR и интерлейкином (ИЛ -1) антигены представляются эпидермальным лимфоцитам, в основном Т-хелперам, которые вырабатывают ИЛ-2, индуцирующий в свою очередь пролиферацию Т-лимфоцитов. Активированные таким образом Т-клетки участвуют в иммунном ответе. В базальном и шиповатом слоях эпидермиса располагаются клетки Гринстейна – разновидность тканевых макрофагов, являющиеся антигенпредставляющими клетками для Т-супрессоров. Эпидермис отделен от дермы базальной мембраной, толщиной 40-50 нм с неровными контурами, повторяющими рельеф внедряющихся в дерму эпидермальных тяжей. Базальная мембрана является эластической опорой, не только прочно связывающей эпителий с коллагеновыми волокнами дермы, но и препятствующей росту эпидермиса в дерму. Она образована из филаментов и полудесмосом, а также сплетений ретикулярных волокон, являющихся частью дермы, выполняет барьерную, обменную и другие функции, и состоит из трех слоев. |