Мега Шпора. &1 Структура и функции биологических мембран. Ионные каналы мембран и их особенности. Мембранноионные механизмы происхождения потенциала покоя. Электрогенез процесса возбуждения
Скачать 2.79 Mb.
|
| № 8 Плазма крови и её химический состав. Белки плазмы крови, их количество и функции. Роль белков плазмы крови и механизме обмена жидкости между кровью и тканями. Плазма крови - жидкая часть крови. В плазме крови находятся её форменные элементы (эритроциты, лейкоциты, тромбоциты). Представляет собой коллоидный раствор белков и др. органических и неорганических соединений, содержит более 20 витаминов и 20 микроэлементов (железо, фосфор, кальций, цинк, кобальт и др.). Состав плазмыи интерстициальной жидкости существенно различаетсялишь по концентрации белков, так как их крупные молекулы не могут свободно проходить через стенки капилляров. Белки плазмы. Общие свойства. Высокая относительная вязкость плазмы (1,9-2,8 при относительной вязкости воды, равной 1) почти целиком обусловлена белками, содержание которых составляет 65-80 г/л. В связи с высокой молекулярной массой белков их моляльная концентрация весьма невелика-всего лишь около 1 ммоль/кг (см. табл. 18.1). Белковая фракция плазмы представляет собой смесь многих белков. Молекулярные массы белков плазмы варьируют от 44 000 до 1300 000. Частицы таких размеров относятся к коллоидам. Функции белков. Белки плазмы крови выполняют ряд функций. 1. Питание. 2. Транспорт. Белки плазмы участвуют также в поддержании постоянного осмотического давления, так как способны связывать большое количество циркулирующих в крови низкомолекулярных соединений. 3. Белки плазмы как неспецифические переносчики. Все белки плазмы связывают катионы крови, переводя их в недиффундирующую форму. 4. Роль белков в создании коллоидно-осмотического давления. Вследствие низкой молекулярной концентрации белков вклад их в общее осмотическое давление плазмы крови весьма невелик, но тем не менее создаваемое ими коллоидно-осмотическое (онкотическое) давление играет важную роль в регуляции распределения воды между плазмой и межклеточной жидкостью. 5. Буферная функция. Поскольку белки-это амфотерные вещества (т. е. способные связывать в зависимости от рН среды и Н+, и ОН"), белки плазмы играют роль буферов, поддерживающих постоянство рН крови. 6. Предупреждение кровопотери. Свертывание крови, препятствующее кровотечению, частично обусловлено наличием в плазме фибриногена. | № 9 Функциональная система, поддерживающая кислотно-основное (рН) состояние крови на оптимальном для метаболизма уровне. Понятие об ацидозе и алкалозе. Буферные системы крови, их характеристики и принцип действия. Ацидоз — одна из форм нарушений кислотно-щелочного равновесия организма; характеризуется абсолютным или относительным избытком кислот, т.е. веществ, отдающих ионы водорода (протоны), по отношению к основаниям, присоединяющим их. Алкалоз - Патологическое состояние, характеризующееся потерей кислот и избыточным накоплением щелочных соединений, в результате нарушения дыхания или нарушения метаболизма. Буферные системы крови, их характеристики и принцип действия. Общее понятие о буферных системах. Прежде всего необходимо вспомнить, что реакции диссоциации слабой кислоты НА на ионы водорода Н+ и сопряженное основание А- подчиняются закону действующих масс. Кинетику таких реакций описывает уравнение Подобное уравнение для буферных систем, выведенное из закона действующих масс, называется уравнением Гендерсона- Гассельбальха. Величина рK', так же как и К', -константа, характеризующая свойства системы (рК'= -lgK'). Уравнение можно представить в следующем виде: Показателем способности системы, состоящей из слабой кислоты и сопряженного основания, создавать буферный эффект служит буферная емкость - величина, равная соотношению между количеством ионов Н+ или ОН+, добавленных в раствор, и изменением рН. Таким образом, буферная емкость раствора зависит от его концентрации и от разницы между рН и рК' этого раствора. Бикарбонатный буфер. Из имеющихся в крови буферных систем рассмотрим прежде всего бикарбонатную систему. Она включает относительно слабую угольную кислоту, образующуюся при гидратации СО2, и бикарбонат в качестве сопряженного основания. Регулируя напряжение СО2 в крови, дыхательная система обеспечивает высокое содержание компонентов буферной системы. Кроме того, органы дыхания вместе с бикар-бонатным буфером образуют «открытую систему», в которой напряжение СО2 (а следовательно, и рН крови) может регулироваться путем изменения вентиляции легких. Фосфатный буфер. В фосфатной буферной системе, образованной неорганическими фосфатами крови, роль кислоты играет одноосновный фосфат H2PO4, а роль сопряженного основания-двухосновный фосфат НРО. Величина рК' фосфатного буфера (6,8) сравнительно близка к рН крови, однако емкость данного буфера невелика по причине низкого содержания фосфата в крови. Белковый буфер. Буферные свойства белков крови обусловлены способностью аминокислот ионизироваться. Концевые карбокси- и аминогруппы белковых цепей играют в этом отношении незначительную роль, так как таких групп мало и их рК' существенно отличаются от рН крови. Значительно больший вклад в создание буферной емкости белковой системы вносят боковые группы, способные ионизироваться, и особенно имидазольнов кольцо гистидина. К буферным белкам относятся как белки плазмы (в частности, альбумин), так и содержащийся в эритроцитах гемоглобин. На долю последнего приходится большая часть буферной емкости белковой системы, что связано как со значительной концентрацией гемоглобина, так и с относительно высоким содержанием в нем гистидина. | |||||||||||||||||||||||||||
№ 10 Форменные элементы крови. Эритроциты: количество, физиологическая роль. Гемолиз эритроцитов, виды гемолиза. Скорость оседания эритроцитов (СОЭ), ее клиническое значение, факторы, влияющие на СОЭ. Форменные элементы крови. Кровь является циркулирующей по кровеносным сосудам жидкой тканью, состоящей из двух основных компонентов, — плазмы и взвешенных в ней форменных элементов — эритроцитов, лейкоцитов и кровяных пластинок (тромбоцитов). В среднем в теле человека с массой тела 70 кг содержится около 5—5,5 л крови. Эритроциты, или красные кровяные тельца, человека и млекопитающих представляют собой безъядерные клетки, утратившие в процессе фило- и онтогенеза ядро и большинство органелл. Эритроциты неспособны к делению. Функции эритроцитов. Основная функция эритроцитов — дыхательная — транспортировка кислорода и углекислоты. Эта функция обеспечивается дыхательным пигментом — гемоглобином . Кроме того, эритроциты участвуют в транспорте аминокислот, антител, токсинов и ряда лекарственных веществ, адсорбируя их на поверхности плазмолеммы. Количество эритроцитов у взрослого мужчины составляет 3,9-5,5 • 1012л, а у женщин — 3,7-4,9 • 1012л крови. Популяция эритроцитов неоднородна по форме и размерам. В нормальной крови человека основную массу составляют эритроциты двояковогнутой формы — дискоциты. Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов — шиловидные эритроциты, или эхиноциты, куполообразные, или стоматоциты, и шаровидные, или сфероциты. Процесс старения эритроцитов идет двумя путями — кренированием (образование зубцов на плазмолемме) или путем инвагинации участков плазмолеммы. Продолжительность жизни. Средняя продолжительность жизни эритроцитов составляет около 120 дней. Разрушение эритроцитов (гемолиз) может произойти под влиянием различных случайных факторов, связанных с их движением (механический гемолиз) и изменением физико-химических свойств плазмы (физический гемолиз, химический гемолиз, осмотический гемолиз), а также в результате естественного старения. Различают несколько видов гемолиза. Они связаны с изменением резистентности эритроцитов — их способности противостоять разрушительным воздействиям. Осмотический гемолиз возникает в гипотоническом растворе, осмо-ляльность которого меньше, чем самого эритроцита. В этом случае по законам осмоса растворитель (вода) движется через хорошо проницаемую для нее мембрану эритроцитов в цитоплазму. Эритроциты набухают, а при значительном набухании разрушаются; кровь становится прозрачной («лаковая» кровь). Мерой осмотической резистентности считают концентрацию раствора хлорида натрия, при которой начинается гемолиз. Механический гемолиз возникает при интенсивных физических воздействиях на кровь. Механический гемолиз консервированной крови может произойти при неправильной ее транспортировке — грубом встряхивании и др. У здорового человека незначительный механический гемолиз наблюдается при длительном беге по твердому покрытию (асфальт, бетон); при работах, связанных с продолжительным сильным сотрясением тела у шахтеров при бурении породы и др. Биологический гемолиз связан с попаданием в кровь веществ, образующихся в других живых организмах животного и растительного происхождения: при повторном переливании несовместимой по резус-фактору крови, при укусе змей, ядовитых насекомых, при отравлении грибами. Во всех случаях, как правило, эти реакции имеют иммунный характер. Химический гемолиз происходит под воздействием жирорастворимых веществ, нарушающих фосфолипидную часть мембраны эритроцитов,— наркотических анестетиков (эфир, хлороформ), нитритов, бензола, нитроглицерина, соединений анилина, сапонинов. Термический гемолиз возникает при неправильном хранении крови — ее замораживании и последующем быстром размораживании. Внутриклеточная кристаллизация биологической воды приводит к разрушению оболочки эритроцитов. Внутриклеточный гемолиз. Стареющие эритроциты удаляются из циркулирующей крови и разрушаются в селезенке, печени и незначительно — в костном мозге клетками системы фагоцитирующих мононуклеотидов. Фракции IgG сыворотки содержат аутоантитела против старых эритроцитов, прикрепление которых к эритроцитам приводит к их фагоцитозу. Внутрисосудистый гемолиз. В норме часть эритроцитов разрушается в сосудистом русле. Гемоглобин соединяется с а-гликопротеином плазмы (гаптоглобин) в необратимый комплекс, который из-за большой молекулярной массы не проходит через почечный фильтр, а подвергается быстрому ферментативному расщеплению, в основном в печени. Скорость оседания эритроцитов (СОЭ). Оседание эритроцитов — их свойство осаждаться на дне сосуда (капилляр), при сохранении крови в несвертывающемся состоянии в виде так называемых монетных столбиков, над которыми образуется слой прозрачной жидкости — плазмы. Эритроциты оседают потому, что их относительная плотность больше, чем относительная плотность плазмы. Факторы, влияющие на СОЭ. СОЭ зависит от белкового состава плазмы, главным образом от соотношения глобулинов и альбуминов (в норме АГ-коэффициент равен 1,5—2,3). Клиническое значение. Сдвиг коэффициента за счет увеличения количества глобулинов ускоряет СОЭ, что имеет место при многих патологических (воспаление, туберкулез) и некоторых физиологических (беременность) процессах. Все белковые молекулы (фибриноген, а(-глобулин, аг-глобу-лин, (3-глобулин) в разной степени снижают дзета-потенциал эритроцитов — отрицательный заряд мембран, способствующий взаимному отталкиванию эритроцитов и поддержанию их во взвешенном состоянии. Наибольшее влияние оказывают фибриноген, иммуноглобулины, гаптоглобин. Изменения СОЭ имеют большое диагностическое и прогностическое значение. | |||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||
|
№ 11 Форменные элементы крови. Лейкоциты: виды лейкоцитов, их количество и функции. Лейкоцитарная формула, ее практическое значение. Форменные элементы крови. Кровь является циркулирующей по кровеносным сосудам жидкой тканью, состоящей из двух основных компонентов, — плазмы и взвешенных в ней форменных элементов — эритроцитов, лейкоцитов и кровяных пластинок (тромбоцитов). В среднем в теле человека с массой тела 70 кг содержится около 5—5,5 л крови. Лейкоциты. Лейкоциты, или белые кровяные клетки, в свежей крови бесцветны. Число их составляет в среднем 4-9 • 109 л. Лейкоциты в кровяном русле и лимфе способны к активным движениям, могут переходить через стенку сосудов в соединительную ткань органов, где они выполняют основные защитные функции. По морфологическим признакам и биологической роли лейкоциты подразделяют на две группы: зернистые лейкоциты, или гранулоциты, и незернистые лейкоциты, или агранулоциты . У зернистых лейкоцитов выявляются специфическая зернистость (эозинофильная, базофильная или нейтрофильная) и сегментированные ядра. В соответствии с окраской специфической зернистости различают нейтрофильные, эозинофильные и базофильные гранулоциты. Функции. Лейкоциты выполняют многообразные функции, направленные прежде всего на защиту организма от агрессивных чужеродных влияний. Одни из них обеспечивают специфический иммунитет, другие осуществляют фагоцитоз микроорганизмов и уничтожение их с помощью ферментов, третьи оказывают бактерицидное действие. Лейкоциты выполняют также и секреторную функцию: выделяют антитела с антибактериальными и антитоксическими свойствами, ферменты — протеазы, пептидазы, диастазы, липазы и др. За счет этих веществ лейкоциты могут повышать проницаемость капилляров и даже повреждать эндотелий. Лейкоцитарная формула. Процентное соотношение основных видов лейкоцитов называется лейкоцитарной формулой.
Гранулоциты. К гранулоцитам относятся нейтрофильные, эозинофильные и базофильные лейкоциты. Они образуются в красном костном мозге, содержат специфическую зернистость в цитоплазме и сегментированные ядра. Нейтрофильные гранулоциты— самая многочисленная группа лейкоцитов, составляющая 2,0—5,5 • 109 л крови. Их диаметр в мазке крови 10—12 мкм, а в капле свежей крови 7—9 мкм. В популяции нейтрофилов крови могут находиться клетки различной степени зрелости — юные, палочкоядерные и сегментоядерные. В цитоплазме нейтрофилов видна зернистость. В поверхностном слое цитоплазмы зернистость и органеллы отсутствуют. Здесь расположены гранулы гликогена, актиновые филаменты и микротрубочки, обеспечивающие образование псевдоподий для движения клетки. Во внутренней части цитоплазмы расположены органеллы (аппарат Гольджи, гранулярный эндоплазматический ретикулум, единичные митохондрии). В нейтрофилах можно различить два типа гранул: специфические и азурофильные, окруженные одинарной мембраной. Основная функция нейтрофилов — фагоцитоз микроорганизмов, поэтому их называют микрофагами. Продолжительность жизни нейтрофилов составляет 5—9 сут. Эозинофильные грамулоциты. Количество эозинофилов в крови составляет 0,02— 0,3 • 109 л. Их диаметр в мазке крови 12—14 мкм, в капле свежей крови — 9—10 мкм. В цитоплазме расположены органеллы — аппарат Гольджи (около ядра), немногочисленные митохондрии, актиновые филаменты в кортексе цитоплазмы под плазмолеммой и гранулы. Среди гранул различают азурофильные (первичные) и эозинофильные (вторичные). Функция. Эозинофилы способствуют снижению гистамина в тканях различными путями. Специфическая функция – антипаразитарная. Базофильные гранулоциты. Количество базофилов в крови составляет 0—0,06 • 109/л. Их диаметр в мазке крови равен 11 — 12 мкм, в капле свежей крови — около 9 мкм. В цитоплазме выявляются все виды органелл — эндоплазматическая сеть, рибосомы, аппарат Гольджи, митохондрии, актиновые фила-менты. Функции. Базофилы опосредуют воспаление и секретируют эозинофильный хемотаксический фактор, образуют биологически активные метаболиты арахидоновой кислоты — лейкотриены, простагландины. Продолжительность жизни. Базофилы находятся в крови около 1—2 сут. | № 12 Гемоглобин крови: химическая структура, количество, виды гемоглобина и его химические соединения. Функции гемоглобина. Метод определения содержания гемоглобина в крови, Миоглобин. |