Железобетон. 1. Сущность железобетона. История развития. Области применения
Скачать 1.61 Mb.
|
50. Конструктивные решения монолитных каркасных и бескаркасных многоэтажных зданий их конструирование и расчѐт. Общие сведения. Многоэтажные гражданские каркасные и панельные (бескаркасные) здания для массового строительства проектируют высотой 12...16 этажей, а в ряде случаев — 20 этажей и более. Сетка колонн, шаг несущих стен и высоту этажей выбирают в соответствии с требованиями типизации элементов конструкций и унификации габаритных параметров. Конструктивные схемы зданий, возводимых из сборных элементов, характерны постоянством геометрических размеров по высоте, регулярностью типовых элементов конструкций, четким решением плана. Каркасные конструкции. Их применяют для различных административных и общественных зданий с большими помещениями, редко расположенными перегородками, а в некоторых случаях и для жилых домов высотой более 25 этажей. Основными несущими конструкциями многоэтажного каркасного здания в гражданском строительстве являются железобетонные рамы, вертикальные связевые диафрагмы и связывающие их междуэтажные перекрытия. При действии горизонтальных нагрузок совместная работа разнотипных вертикальных конструкций в многоэтажном здании достигается благодаря высокой жесткости при изгибе в своей плоскости междуэтажных перекрытий, работающих как горизонтальные диафрагмы. Сборные перекрытия в результате закладных деталей и замоноличивания швов между отдельными плитами также обладают высокой жесткостью при изгибе в своей плоскости. Важнейшим условием достижения высоких эксплуатационных качеств многоэтажного здания является обеспечение его надежного сопротивления горизонтальным нагрузкам и воздействиям. Необходимую пространственную жесткость такого здания достигают различными вариантами компоновки конструктивной схемы, в основном отличающимися способами восприятия горизонтальных нагрузок. Например, при поперечных многоэтажных рамах и поперечных вертикальных связевых диафрагмах горизонтальные нагрузки воспринимаются вертикальными конструкциями совместно и каркасное здание в поперечном направлении работает по рамно-связевой системе, при этом в продольном направлении при наличии только вертикальных связевых диафрагм здание работает по связевой системе. При поперечном расположении вертикальных связевых диафрагм и продольном расположении многоэтажных рам здание в поперечном направлении работает п о связевой системе, а в продольном направлении— по рамной системе. Конструктивная схема каркаса при шарнирном соединении ригелей с колоннами будет связевой в обоих направлениях. В строительстве многоэтажных каркасных зданий применяют различные конструктивные схемы: связевые в обоих направлениях или же рамно-связевые в одном направлении и связевые в другом. Для возведения в сейсмических районах страны зданий в монолитном железобетоне применяют системы рамно- связевые и рамные. Панельные конструкции. Их применяют для жилых домов, гостиниц, пансионатов и других аналогичных зданий с часто расположенными перегородками и стенами. В панельных зданиях основными несущими конструкциями служат вертикальные диафрагмы, образованные панелями внутренних несущих стен, расположенными в поперечном или продольном направлении, и связывающие их междуэтажные перекрытия. Панели наружных стен навешивают на торцы панелей несущих стен. Многоэтажное панельное здание как в поперечном, так и в продольном направлениях воспринимает горизонтальную нагрузку по связевой системе. Возможны другие конструктивные схемы многоэтажных зданий. К ним относятся, например, каркасное здание с центральным ядром жесткости, в котором в качестве вертикальных связевых диафрагм используют внутренние стены сблокированных лифтовых и вентиляционных шахт, лестничных клеток; здание с двумя ядрами жесткости открытого профиля — в виде двутавров; здание с двумя ядрами жесткости и сложной конфигурацией в плане, позволяющей индивидуализировать архитектурное решение. В описанных конструктивных схемах зданий горизонтальные воздействия воспринимаются по рамно-связевой или связевой системе. В зданиях с центральным ядром жесткости в целях обеспечения удобной свободной планировки сетку колонн укрупняют, в ряде решений внутренние колонны исключают и элементы перекрытий опирают на наружные колонны и внутреннее ядро жесткости. Ригели перекрытий пролетом 12...15 м проектируют предварительно напряженными, шарнирно связанными с колоннами, панели перекрытий —пустотными или коробчатыми. Горизонтальное воздействие на здание воспринимается по связевой системе. В зданиях с двумя ядрами жесткости и сложной конфигурацией в плане перекрытия выполняют монолитными в виде безбалочной бескапительной плиты. Возводят такие здания методом подъема (перекрытий или этажей). При этом методе полигоном для изготовления перекрытий поднимаемых элементов служит перекрытие над подвалом. Перекрытия бетонируют одно над другим в виде пакета с разделяющими прослойками. В местах, где проходят колонны, в них оставляют отверстия, окаймленные стальными воротниками, заделанными в бетоне. В проектное положение перекрытие поднимают с помощью стальных тяжей и гидравлических домкратов, установленных на колоннах верхнего яруса. После подъема перекрытия в проектное положение стальные воротники крепят к стальным деталям колонн на сварке. При этой конструктивной схеме восприятие горизонтального воздействия на здание осуществляется по связевой системе, а при обеспечении конструктивной связи на опорах плит перекрытий с колоннами — по рамно-связевой системе, в которой ригелями служат безбалочные плиты. Весьма перспективной является конструктивная схема многоэтажного каркасного здания, в которой горизонтальные нагрузки воспринимаются внешней железобетонной коробкой рамной конструкции (рис. 15.20), внутренние ядра жесткости и вертикальные связевые диафрагмы исключены. Перенос вертикальных несущих конструкций на внешний контур здания и восприятие горизонтальной нагрузки внешней пространственной рамой существенно повышает боковую жесткость высокого здания, обеспечивает снижение материалоемкости и трудоемкости конструкции. 51. Конструкции одноэтажных промышленных зданий. Для металлургической, машиностроительной, легкой и других отраслей промышленности возводят одноэтажные каркасные здания. Конструктивной и технологической особенностью таких зданий является оборудование их транспортными средствами — мостовыми и подвесными кранами. Мостовые краны перемещаются по специальным путям, опертым на колонны; подвесные краны перемещаются по путям, подвешенным к элементам покрытия. Покрытие одноэтажного производственного здания может быть балочным из линейных элементов или пространственным в виде оболочек. К элементам конструкции одноэтажного каркасного здания с балочным покрытием относятся: колонны (стойки), заделанные в фундаментах; ригели покрытия (балки, фермы, арки), опирающиеся на колонны, плиты покрытия, уложенные по ригелям; подкрановые балки; световые или аэрационные фонари. Основная конструкция каркаса — поперечная рама, образованная колоннами и ригелями. Пространственная жесткость и устойчивость одноэтажного каркасного здания достигаются защемлением колонн в фундаментах. В поперечном направлении пространственная жесткость здания обеспечивается поперечными рамами, в продольном — продольными рамами, образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями. Одноэтажные производственные здания могут быть также с плоским покрытием без фонарей. Примером может служить конструктивная схема здания, в которой длинномерные панели покрытия на пролет уложены по продольным балкам и служат ригелями поперечной рамы (рис. 13.2). 52. Нагрузки действующие на поперечную раму одноэтажного промздания. Определение усилий в сечениях колонн поперечных рам от действующих нагрузок и составление сочетаний расчѐтных усилий. Поперечная рама одноэтажного каркасного здания испытывает действие постоянных нагрузок от веса покрытия и различных временных нагрузок от снега, вертикального и горизонтального давления мостовых кранов, положительного и отрицательного давления ветра и др. (рис. 13.19, а). В расчетной схеме рамы соединение ригеля с колонной считают шарнирным, а соединение колонны с фундаментами— жестким. Длину колонн принимают равной расстоянию от верха фундамента до низа ригеля. Цель расчета поперечной рамы — определить усилия в колоннах от расчетных нагрузок и подобрать их сечения, а также определить боковой прогиб верха рамы от нормальной ветровой нагрузки. Предъявленный прогиб, установленный нормами, составляет: где длина колонны от верха фундамента до низа стропильной конструкции — ригеля рамы. Постоянная нагрузка от веса покрытия передается на колонну как вертикальное опорное давление ригеля Эту нагрузку подсчитывают по соответствующей грузовой площади. Вертикальная нагрузка приложена по оси опоры ригеля и передается на колонну при привязке наружной грани колонны к разбивочной оси на 250 мм с эксцентриситетом: в верхней надкрановой части (при нулевой привязке ); в нижней подкрановой части [при нулевой привязке ]; нагрузка F приложена с моментом, равным Временную нагрузку от снега устанавливают в соответствии с географическим районом строительства и профилем покрытия. Она передается на колонну так же, как вертикальное опорное давление ригеля и подсчитыва-ется по той же грузовой площади, что и нагрузка от веса покрытия. Временную нагрузку от мостовых кранов определяют от двух мостовых кранов, работающих в сближенном положении. Коэффициент надежности для определения расчетных значений вертикальной и горизонтальной нагрузок от мостовых кранов Вертикальную нагрузку на колонну вычисляют по линиям влияния опорной реакции подкрановой балки, наибольшая ордината которой на опоре равна единице. Одну сосредоточенную силу от колеса моста прикладывают на опоре, остальные силы располагают в зависимости от стандартного расстояния между колесами крана (рис. 13.19, б). Максимальное давление на колонну (13.8) при этом давление на колонну на противоположной стороне (13.9) Вертикальное давление от кранов передается через подкрановые балки на подкрановую часть колонны с эксцентриситетом, равным для крайней колонны (при нулевой привязке , для средней колонны (рис. 13.19, в). Соответствующие моменты от крановой нагрузки Горизонтальная нагрузка на колонну от торможения двух мостовых кранов, находящихся в сближенном положении, передается через подкрановую балку по тем же линиям влияния, что и вертикальное давление: (13.10) Временную ветровую нагрузку принимают в зависимости от географического района и высоты здания, устанавливая ее значение на 1 м 2 поверхности стен и фонаря. С наветренной стороны действует положительное давление, с подветренной — отрицательное. Стеновые панели передают ветровое давление на колонны в виде распределенной нагрузки где — шаг колонн. Неравномерную по высоте здания ветровую нагрузку приводят к равномерно распределенной, эквивалентной по моменту в заделке консоли. Ветровое давление, действующее на фонарь и часть стены, расположенную выше колонн, передается в расчетной схеме в виде сосредоточенной силы 53. Конструктивные схемы одноэтажных промзданий. Компановка одноэтажного промздания, связи, температурно-усадочные швы, выбор типа колонн и др. конструкций. Для металлургической, машиностроительной, легкой и других отраслей промышленности возводят одноэтажные каркасные здания. Конструктивной и технологической особенностью таких зданий является оборудование их транспортными средствами — мостовыми и подвесными кранами. Мостовые краны перемещаются по специальным путям, опертым на колонны; подвесные краны перемещаются по путям, подвешенным к элементам покрытия. Покрытие одноэтажного производственного здания может быть балочным из линейных элементов или пространственным в виде оболочек. К элементам конструкции одноэтажного каркасного здания с балочным покрытием относятся: колонны (стойки), заделанные в фундаментах; ригели покрытия (балки, фермы, арки), опирающиеся на колонны, плиты покрытия, уложенные по ригелям; подкрановые балки; световые или аэрационные фонари. Основная конструкция каркаса — поперечная рама, образованная колоннами и ригелями. Пространственная жесткость и устойчивость одноэтажного каркасного здания достигаются защемлением колонн в фундаментах. В поперечном направлении пространственная жесткость здания обеспечивается поперечными рамами, в продольном — продольными рамами, образованными теми же колоннами, элементами покрытия, подкрановыми балками и вертикальными связями. Одноэтажные производственные здания могут быть также с плоским покрытием без фонарей. Примером может служить конструктивная схема здания, в которой длинномерные панели покрытия на пролет уложены по продольным балкам и служат ригелями поперечной рамы (рис. 13.2) Сетка колонн одноэтажных каркасных зданий с мостовыми кранами в зависимости от технологии производственного процесса может быть 12X18, 12X24, 12X30 м или 6X18, 6X24, 6X30 м. Шаг колонн принимают преимущественно 12 м; если при этом шаге используются стеновые панели длиной 6 м, то по наружным осям кроме основных колонн устанавливают промежуточные (фахверковые) колонны. При шаге колонн 12 м возможен шаг ригелей 6 м с использованием в качестве промежуточной опоры подстропильной фермы. Лучшие технико-экономические показатели по трудоемкости и стоимости достигаются в сборных железобетонных покрытиях при шаге колонн 12 м без подстропильных ферм. В целях сохранения однотипности элементов покрытия колонны крайнего ряда располагают так, чтобы разбивочная ось ряда проходила на расстоянии 250 мм от наружной грани колонны. Колонны крайнего ряда при шаге 6 м и кранах грузоподъемностью до 30 т располагают с нулевой привязкой, совмещая ось ряда с наружной гранью колонны. Колонны торцов здания смещают с поперечной разбивочной оси на 500 мм. При большой протяженности в поперечном и продольном направлениях здание делят температурными швами на отдельные блоки. Продольный температурный шов выполняют, как правило, на спаренных колоннах со вставкой, при этом колонны у температурного шва имеют привязку к продольным разбивочным осям 250 мм (или нулевую при 6 м). Поперечный температурный шов также выполняют на спаренных колоннах, но при этом ось температурного шва совмещается с поперечной разбивочной осью, а оси колонн смещаются с разбивочной оси на 500 мм. Расстояние от разбивочной оси ряда до оси подкрановой балки при мостовых кранах грузоподъемностью до 50 т принято λ = 750 мм. Это расстояние складывается из габаритного размера крана В, размера сечения колонны в надкрановой части h 2 и требуемого зазора С между габаритом крана и колонной. На крайней колонне 54. Расчѐт поперечной рамы с учѐтом пространственной работы каркаса одноэтажного промздания. Покрытие здания из железобетонных плит, соединенных сваркой закладных деталей с замоноличиванием швов, представляет собой жесткую в своей плоскости горизонтальную связевую диафрагму. Колонны здания, объединенные горизонтальной связевой диафрагмой в поперечные и продольные рамы, работают как единый пространственный блок. Размеры такого блока в плане определяются расстояниями между температурными швами (рис. 13.20, а). Нагрузки от массы покрытия, снега, ветра приложены одновременно ко всем рамам блока, при этих нагрузках пространственный характер работы каркаса здания не проявляется и каждую плоскую раму можно рассчитывать в отдельности. Нагрузки же от мостовых кранов приложены к двум-трем рамам блока, но благодаря горизонтальной связевой диафрагме в работу включаются и остальные рамы блока; происходит пространственная работа. В каркасном здании из типовых элементов с регулярным шагом колонн и постоянной жесткостью сечений колонн центр жесткости блока (т. е. точка приложения равнодействующей реактивных сил при поступательном перемещении блока) совпадает с его геометрическим центром. Если поместить начало координат в этом центре и принять что х — координата поперечной рамы, а у— продольной рамы {рис. 13.20, б), то, приложив к поперечной раме с координатой х0 силу F, можно определить перемещение этой рамы. Перемещение блока от силы F — поступательное, а от момента —вращатель- ное. Если — реакция поперечной рамы от единичного перемещения то поступательное перемещение блока (13.11) где n — число поперечных рам блока. При вращательном перемещении жесткой в своей плоскости горизонтальной связевой диафрагмы на угол поперечные рамы получают перемещение, равное но поскольку конечный угол будет малым и, следовательно, поперечные рамы получают перемещение, равное их координате х, а продольные рамы — равное у. При этом возникают реакции: в поперечных рамах (13.12) в продольных рамах (13.13) где — реакция продольной рамы от смещения (определяется с учетом сопротивления вертикальных связей по колоннам). Кручением колонн при вращении горизонтальной диафрагмы ввиду его малости можно пренебречь. Угловая жесткость блока или реактивный момент блока от единичного угла поворота диафрагмы (13.14) Угловая жесткость блока с учетом значения реакций согласно формулам (13.12), (13.13), составляет (13.15) где Угол поворота блока вокруг центра вращения (13.16) Перемещение поперечной рамы с координатой от силы F находят суммированием перемещений — поступательного и от вращения блока. Тогда (13.17) Находят реактивную силу от единичного перемещения поперечной рамы, приравняв единице перемещение по формуле (13.17). Тогда (13.18) где (13.19) Коэффициент характеризует пространственную работу каркаса, состоящего из поперечных и продольных рам. Следует принять во внимание податливость соединений плит покрытия, которую на основании исследований оценивают коэффициентом 0,7 к значению а также учесть загружение нагрузкой от мостовых кранов рам, смежных с рассчитываемой, коэффициентом 0,7. Тогда (13.20) Если учитывать пространственную работу рам лишь одного поперечного направления, то в упрощенном решении при из формулы (13.19) (13.21) Тогда при длине блока 72 м для второй от торца блока поперечной рамы, находящейся в наименее благоприятных условиях (в части помощи, оказываемой работой соседних рам), при шаге 12 м при шаге 6 м. Таким образом, поперечную раму можно рассчитывать на крановые нагрузки с учетом пространственной работы каркаса здания методом перемещений с введением к реакции от единичного перемещения поперечной рамы коэффициента (рис. 13.21). |