Главная страница
Навигация по странице:

  • 32. Конструктивные схемы и деформационные швы зданий.

  • 33. Проектирование железобетонных конструкций с учѐтом усилий, возникающих при изготовлении, транспортировке и монтаже.

  • 34. Классификация плоских железобетонных перекрытий и их конструктивные элементы

  • Железобетон. 1. Сущность железобетона. История развития. Области применения


    Скачать 1.61 Mb.
    Название1. Сущность железобетона. История развития. Области применения
    Дата17.01.2022
    Размер1.61 Mb.
    Формат файлаpdf
    Имя файлаЖелезобетон.pdf
    ТипДокументы
    #333206
    страница6 из 13
    1   2   3   4   5   6   7   8   9   ...   13
    31. Основные положения проектирования зданий и сооружений из железобетонных конструкций.
    Унификация и типизация.
    Конструкции промышленных и гражданских зданий состоят из отдельных элементов, связанных в единую систему/ Отдельные элементы зданий — плиты и балки перекрытий, колонны, стены и др. — должны обладать прочностью и устойчивостью, достаточной жесткостью, трещиностойкостью и участвовать в общей работе здания. При загружении одного из элементов здания в работу включаются и другие элементы, происходит работа пространственной системы.
    Здание в целом должно надежно сопротивляться деформированию в горизонтальном направлении под влиянием различных нагрузок и воздействий, т. е. должно обладать достаточной пространственной жесткостью. Учет пространственной работы зданий приводит к более экономичным конструктивным решениям.
    Конструктивные схемы зданий, удовлетворяющие изложенным требованиям, могут быть каркасными и панельными (бескаркасными), многоэтажными и одноэтажными. Каркас многоэтажного здания образуют основные вертикальные и горизонтальные элементы — колонны и ригели. Каркас одноэтажного зда- ния образуют колонны, заделанные в фундамент, и ригели, шарнирно или жестко соединенные с колоннами. В каркасном здании горизонтальные воздействия
    (ветровые, сейсмические и т. п.) могут восприниматься совместно каркасом и вертикальными связевыми диафрагмами, соединенными перекрытиями в единую пространственную систему, или же при отсутствии вертикальных диафрагм только каркасом как рамной конструкцией. В многоэтажном панельном здании горизонтальные воздействия воспринимаются совместно поперечными и продольными стенами, также соединенными перекрытиями в пространственную систему.
    Железобетонные конструкции при всех возможных конструктивных схемах зданий должны быть индустриальными и экономичными. Их проектируют так, чтобы максимально использовать машины и механизмы при иизготовлении и монтаже зданий и свести к минимуму затраты ручного труда и расход строительных материалов. В наибольшей степени этим требованиям отвечают сборные железобетонные конструкции заводского изготовления.
    Производство сборых железобетонных элементов наиболее эффективно в том случае, когда на заводе изготовляют серии однотипных элементов.
    Технологический процесс при этом совершенствуется, снижается трудоемкость изготовления и стоимость изделий, улучшается их качество. Отсюда вытекает важнейшее требование, чтобы число типов элементов в здании было ограниченным, а применение их — массовым (для возможно большего числа зданий различного назначения).
    С этой целью элементы типизируют, т. е. для каждого конструктивного элемента здания отбирают наиболее рациональный, проверенный на практике, тип конструкции с наилучшими по сравнению с другими решениями технико-экономическими показателями (расход материалов, масса, трудоемкость изготовления и монтажа, стоимость). Выбранный таким образом тип элемента принимают для массового изготовления.

    Опыт типизации показывает, что для изгибаемых элементов, например панелей перекрытий, целесообразно при изменении их длины или действующей нагрузки сохранять размеры поперечного сечения, увеличивая лишь сечение арматуры. Для балок покрытий, длина которых и значения нагрузок меняются в большом диапазоне, рекомендуется менять и размеры сечения, и армирование. Для колонн многоэтажных гражданских зданий (а в ряде случаев и промышленных) следует сохранять неизменными размеры поперечных сечений и изменять по этажам здания лишь сечение арматуры и в необходимых случаях класс бетона. При этом несмотря на некоторый излишний расход бетона в колоннах верхних этажей общая стоимость конструкции снижается благо- даря многократному использованию форм, унификации арматурных каркасов. Кроме того, при постоянных размерах сечения колонн по этажам соблюдается однотипность балок перекрытий, опирающихся на колонны.
    В результате работы по типизации составлены каталоги сборных железобетонных элементов, которыми руководствуются при проектировании различных зданий.
    Чтобы одни и те же типовые элементы можно было широко применять в различных зданиях, расстояние между колоннами в плане, (сетку колонн) и высоту этажей унифицируют, т.е. приводят к ограниченному числу размеров. Основой унификации служит единая модульная система, предусматривающая градацию размеров на базе модуля 100 мм или укрупненного модуля, кратного 100 мм.
    Для одноэтажных промышленных зданий с мостовыми кранами расстояние между разбивочными осями в продольном направлении (шаг колонн) принято равным 6 или 12 м, а между разбивочными осями в поперечном направлении (пролеты здания)—кратным укрупненному модулю 6 м, т.е. 18, 24, 30 м и т.д.
    Высота от пола до низа основной несущей конструкции принята кратной модулю 1,2 м, например 10,8; 12 м и т. д. до 18 м.
    Для многоэтажных промышленных зданий унифицированной является сетка колонн 9X6, 12X6 м под временные нормативные нагрузки на перекрытия 5,
    10 и 15 кН/м
    2
    и сетка колонн 6X6 под временные нормативные нагрузки 10, 15, 20 кН/м
    2
    . Высоту этажей принимают кратной укрупненному модулю 1,2 м, например 3,6; 4,8; 6 м.
    В гражданских зданиях укрупненным модулем для сетки осей является размер 0,2 м. Расстояние между осями сетки в продольном и поперечном направлениях назначают от 2,8 до 6,8 м, высоту этажей — от 3 до 4,8 м, т. е. кратную модулю 0,3 м.
    На основе унифицированных размеров оказалось возможным все многообразие объемно-планировочных решений зданий свести к ограниченному числу унифицированных конструктивных схем, т. е. схем, где решение каркаса здания и его узлов однотипно. Все это позволило создать типовые проекты зданий для массового применения в строительстве.
    Предусмотрено три категории размеров типовых элементов зданий: номинальные, конструктивные и натурные. Номинальные размеры — расстояния между разби-вочными осями здания в плане. Например, плита покрытия при шаге колонн 6 м имеет номинальную длину 6 м. Конструктивные размеры отличаются от номинальных на размер швов и зазоров. Например, плита покрытия при номинальной длине 6000 мм имеет конструктивный размер 5970 мм, т. е. зазор составляет 30 мм (рис. 10.4). Размер зазоров зависит от условий и методов монтажа и должен допускать удобную сборку элементов и в необходимых случаях заливку швов раствором. В последнем случае зазор принимают не менее 30 мм. Натурные размеры элемента — фактические размеры, которые в зависимости от точности изготовления могут отличаться от конструктивных размеров на некоторую величину, называемую допуском (3...10 мм). Нор- мированные допуски учитывают при назначении конструктивных размеров элементов вместе с необходимыми зазорами в швах и стыках.
    32. Конструктивные схемы и деформационные швы зданий.
    Конструкции промышленных и гражданских зданий состоят из отдельных элементов, связанных в единую систему/ Отдельные элементы зданий — плиты и балки перекрытий, колонны, стены и др. — должны обладать прочностью и устойчивостью, достаточной жесткостью, трещиностойкостью и участвовать в общей работе здания. При загружении одного из элементов здания в работу включаются и другие элементы, происходит работа пространственной системы.
    Здание в целом должно надежно сопротивляться деформированию в горизонтальном направлении под влиянием различных нагрузок и воздействий, т. е. должно обладать достаточной пространственной жесткостью. Учет пространственной работы зданий приводит к более экономичным конструктивным решениям.
    Конструктивные схемы зданий, удовлетворяющие изложенным требованиям, могут быть каркасными и панельными (бескаркасными), многоэтажными и одноэтажными. Каркас многоэтажного здания образуют основные вертикальные и горизонтальные элементы — колонны и ригели (рис. 10.1). Каркас одноэтажного здания образуют колонны, заделанные в фундамент, и ригели, шарнирно или жестко соединенные с колоннами. В каркасном здании горизонтальные воздействия (ветровые, сейсмические и т. п.) могут восприниматься совместно каркасом и вертикальными связевыми диафрагмами, соединенными перекрытиями в единую пространственную систему, или же при отсутствии вертикальных диафрагм только каркасом как рамной конструкцией. В многоэтажном панельном здании горизонтальные воздействия воспринимаются совместно поперечными и продольными стенами, также соединенными перекрытиями в пространственную систему.
    Железобетонные конструкции при всех возможных конструктивных схемах зданий должны быть индустриальными и экономичными. Их проектируют так, чтобы максимально использовать машины и механизмы при иизготовлении и монтаже зданий и свести к минимуму затраты ручного труда и расход строительных материалов. В наибольшей степени этим требованиям отвечают сборные железобетонные конструкции заводского изготовления.
    С изменением температуры железобетонные конструкции деформируются — укорачиваются или удлиняются; вследствие усадки бетона—укорачиваются.
    При неравномерной осадке основания части конструкций взаимно смещаются в вертикальном направлении.
    В большинстве случаев железобетонные конструкции представляют собой статически неопределимые системы и поэтому от изменения температуры, усадки бетона, а также от неравномерной осадки фундаментов в них возникают дополнительные усилия, что может привести к появлению трещин или к разрушению части конструкции.
    Чтобы уменьшить усилия от температуры и усадки, железобетонные конструкции делят по длине и ширине температурно-усадочными швами на отдельные части — деформационные блоки. Если расстояние между такими швами при температуре выше минус 40 °С не превышает пределов, указанных в табл, то конструкции без предварительного напряжения, предварительно напряженные, к трещиностойкости которых предъявляют требования 3-й категории, на температуру и усадку можно не рассчитывать.
    Расстояния между температурными швами, указанные в табл. 10.1, допустимы при расположении вертикальных связей каркасных зданий в середине деформационного блока. Если же связи расположены по его краям, то работа здания при температурно-усадочных деформациях приближается по характеру к работе сплошных конструкций.
    Для железобетонных конструкций одноэтажных каркасных зданий допускается увеличение расстояния между температурно-усадочными швами на 20 % сверх значений, указанных в табл. 10.1.
    Температурно-усадочные швы выполняют в наземной части здания — от кровли до верха фундамента, разделяя при этом перекрытия и стены. Ширина температурно-усадочных швов обычно составляет 20...30 мм, она уточняется расчетом в зависимости от длины температурного блока и температурного перепада. Наиболее четкий температурно-усадочный шов конструкции создают устройством парных колонн и парных балок по ним.
    Осадочные швы, служащие одновременно и температурно-усадочными, устраивают между частями зданий разной высоты или в зданиях, возводимых на участке с разнородными грунтами; такими швами делят и фундаменты. В ряде случаев осадочные швы устраивают с помощью вкладного пролета из плит и балок. Осадочный шов служит одновременно и температурно-усадочным швом здания.
    33. Проектирование железобетонных конструкций с учѐтом усилий, возникающих при
    изготовлении, транспортировке и монтаже.
    Элементы сборных конструкций при подъеме, транспортировании и монтаже испытывают нагрузку от собственного веса; при этом расчетные схемы элементов могут существенно отличаться от расчетных схем их в проектном положении. Сечение элементов, запроектированное на восприятие усилий в проектном положении, в ряде случаев может оказаться недостаточным для процессов транспортирования и монтажа. В связи с этим необходимо расчетные схемы элементов назначать так, чтобы усилия, возникающие при транспортировании и монтаже, были возможно меньше. Для этого устанавливают соответствующее расположение монтажных петель, строповочных отверстий, мест опирания и показывают его на рабочих чертежах элементов.
    Элементы следует рассчитывать на нагрузку от веса элемента, вводя коэффициент динамичности: при транспортировании— 1,6, при подъеме и монтаже —
    1,4. Коэффициент надежности в этом расчете принимают γ
    f
    = 1. Нормы допускают снижение коэффициента динамичности до 1,25, если это подтверждено опытом применения таких конструкций.
    Наиболее характерным примером элемента сборной конструкции, расчетная схема которого при транспортировании и монтаже существенно отличается от расчетной схемы в проектном положении, является колонна. В этом примере колонна испытывает изгиб вместо сжатия, меняются положение сжатой зоны сечения, положение сжатой и растянутой арматуры. Чтобы получить более благоприятную расчетную схему колонны на монтаже, целесообразно переместить
    монтажные петли от концов к середине, тогда при подъеме колонна работает как балка с консолями и изгибающие моменты, возникающие на монтаже, уменьшаются.
    Выбор рациональной расчетной схемы двухпролетной рамы на монтаже ясен из анализа возможного расположения мест захвата при ее подъеме. Применяя траверсу, можно захватить раму за ее узлы, и тогда знаки изгибающих моментов в ригелях сохраняются такими же, как и в рабочем положении, а потому прочность рамы в процессе монтажа будет обеспечена без дополнительного армирования. Если же захватить раму без траверсы непосредственно в двух точках за ригели, то характер эпюры моментов изменяется: в середине пролета ригеля возникнут отрицательные моменты и потребуется дополнительное армирование, не используемое в проектном положении.
    Элементы с сечениями значительной высоты и относительно малой ширины (высокие балки, фермы, стеновые панели и т. п.) транспортируют обычно в рабочем положении — «на ребро», поскольку их несущая способность в горизонтальном положении мала и перечисленные меры по изменению расчетной схемы на монтаже не эффективны.
    При проектировании сборных железобетонных конструкций необходимо: устанавливать помимо класса бетона отпускную прочность элементов заводского изготовления, т. е. кубиковую прочность бетона, при которой допускается транспортирование и монтаж элементов; предусматривать конструктивные меры, чтобы обеспечить устойчивость отдельных элементов и всего здания в процессе монтажа, а также выполнение ряда требований охраны труда.
    34. Классификация плоских железобетонных перекрытий и их конструктивные элементы
    Железобетонные плоские перекрытия — наиболее распространенные конструкции в промышленных и гражданских зданиях и сооружениях. Их широкому применению в строительстве способствуют высокая индустриальность, экономичность, жесткость, огнестойкость и долговечность.
    По конструктивной схеме железобетонные перекрытия могут быть разделены на две основные группы: балочные и безбалочные. Балочными называют перекрытия, в которых балки работают совместно с опирающимися на них плитами перекрытий. В безбалочных перекрытиях плита опирается непосредственно на колонны с уширениями, называемыми капителями.
    Те и другие перекрытия могут быть сборными, монолитными и сборно-монолитными. Конструктивные схемы перекрытий сборного и монолитного исполнения различны, поэтому перекрытия классифицируют по конструктивным признакам следующим образом: балочные сборные; ребристые монолитные с балочными плитами; ребристые монолитные с плитами, опертыми по контуру; балочные сборно-монолитные; безбалочные сборные; безбалочные монолитные; безбалочные сборно-монолитные.
    Плиты в составе конструктивных элементов перекрытия в зависимости от отношения сторон опорного контура могут быть: при отношении сторон
    — балочными (рис,
    11,1, а), работающими на изгиб в направлении меньшей стороны; при этом изгибающим моментом в направлении большей стороны ввиду его малости пренебрегают; при отношении сторон
    — опертыми по конту- ру (рис. 11.1,6), работающими на изгиб в двух направлениях, имеющими перекрестную рабочую арматуру.
    В строительстве, как правило, применяют сборные перекрытия, отличающиеся высокой индустриальностью.
    Тип конструкции перекрытия выбирают в каждом случае по экономическим соображениям в зависимости от назначения здания, действующих нагрузок, местных условий и др.
    Балочные сборные перекрытия
    В состав конструкции балочного панельного сборного перекрытия входят плиты и поддерживающие их балки, называемые ригелями, или главными балками (рис. 11.2, а). Ригели опираются на колонны и стены; их направление может быть продольным (вдоль здания) или поперечным (рис. 11.2,6). Ригели вместе с колоннами образуют рамы.
    Ребристые монолитные перекрытия с балочными плитами
    Ребристое перекрытие с балочными плитами состоит из плиты, работающей по короткому направлению, второстепенных и главных балок. Все элементы перекрытия монолитно связаны и выполняются из бетона класса В15. Сущность конструкции монолитного ребристого перекрытия в том, что бетон в целях экономии удален из растянутой зоны сечений, где сохранены лишь ребра, в которых сконцентрирована растянутая арматура. Полка ребер •— плита — с пролетом, равным расстоянию между второстепенными балками, работает на местный изгиб.
    Второстепенные балки опираются на монолитно связанные с ними главные балки, а те, в свою очередь, —. на колонны и наружные стены.
    Ребристые монолитные перекрытия с плитами, опертыми по контуру
    Перекрытия с плитами, опертыми по контуру, применяют главным образом но архитектурным соображениям, например, для перекрытия вестибюля, зала и т. п. По расходу арматуры и бетона эти перекрытия менее экономичны, чем перекрытия с балочными плитами при той же сетке колонн. Конструктивная схема перекрытий включает плиты, работающие на изгиб в двух направлениях, и поддерживающие их балки. Все элементы перекрытия монолитно связаны.
    Перекрытия с плитами, опертыми по трем сторонам
    В состав конструктивной схемы входят сборные плиты, опирающиеся по трем сторонам контура — двум коротким и одной длинной — и поддерживающие их поперечные и продольные стены.
    Балочные сборно-монолитные перекрытия
    Сборно-монолитная конструкция перекрытия состоит из сборных элементов и монолитных частей, бетонируемых непосредственно на площадке.
    Затвердевший бетон этих монолитных участков связывает конструкцию в единую совместно работающую систему.
    Безбалочные сборные перекрытия
    Безбалочное сборное перекрытие представляет собой систему сборных панелей, опертых непосредственно на капители колонн. Основное конструктивное назначение капителей в том, чтобы обеспечить жесткое сопряжение перекрытия с колоннами, уменьшить размер расчетных пролетов и создать опору для панелей. Сетка колонн — обычно квадратная размером 6X6 м.
    Безбалочные монолитные перекрытия
    Безбалочное монолитное перекрытие представляет собой сплошную плиту, опертую непосредственно на колонны с капителями. Устройство капителей вызывается конструктивными соображениями, с тем чтобы создать достаточную жесткость в месте сопряжения монолитной плиты с колонной, обеспечить прочность плиты на продавливание по периметру капители, уменьшить расчетный пролет безбалочной плиты и более равномерно распределить моменты по ее ширине.
    Безбалочные сборно-монолитные перекрытия
    В безбалочных сборно-монолитных перекрытиях остовом для монолитного бетона служат сборные элементы — надколонные и пролетные панели (рис.
    11.42).
    Одно из возможных решений состоит в том, что капители на монтаже временно крепят к колоннам съемными хомутами. Связь между колонной и капителью создается после замоноличивания перекрытия и образования бетонных шпонок на поверхности колонны.
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта