Главная страница
Навигация по странице:

  • 1. Влияние шума, излучения и радиации на живые организмы

  • Искусственные магнитные и электрические поля и их влияние на природу и человека.

  • Влияние магнитного поля на живые организмы.

  • Тепловое воздействие, вызванное поглощением ВЧ излучения.

  • Нетепловые эффекты ВЧ излучения

  • Воздействие электромагнитного излучения на жизненно важные объекты

  • Влияние радиации на организмы

  • 2. Типы экологических взаимодействий в экосистемах: хищничество, паразитизм, симбиоз и др

  • 3. Плата за загрязнение окружающей среды

  • Экология 19. 1. Влияние шума, излучения и радиации на живые организмы


    Скачать 123.5 Kb.
    Название1. Влияние шума, излучения и радиации на живые организмы
    Дата17.09.2021
    Размер123.5 Kb.
    Формат файлаdoc
    Имя файлаЭкология 19.doc
    ТипДокументы
    #233183

    1. Влияние шума, излучения и радиации на живые организмы.

    2. Типы экологических взаимодействий в экосистемах: хищничество, паразитизм, симбиоз и др.

    3. Плата за загрязнение окружающей среды.
    Ответ:
    1. Влияние шума, излучения и радиации на живые организмы.
    Шум – комплекс звуков, вызывающий неприятное ощущение или болезненные реакции. Шум - одна из форм физической среды жизни. Влияние шума на организм зависит от возраста, слуховой чувствительности, продолжительности действия, характера. Шум мешает нормальному отдыху, вызывает заболевания органов слуха, способствует увеличению числа других заболеваний угнетающе действует на психику человека. Шум – такой же медленный убийца, как и химическое отравление. Первые дошедшие до нас жалобы на шум можно найти у римского сатирика Ювенала (60-127гг.).

    Современный шумовой дискомфорт вызывает у живых организмов болезненные реакции. Шум от пролетающего реактивного самолета, например, угнетающе действует на пчелу, она теряет способность ориентироваться. Этот же шум убивает личинки пчел, разбивает открыто лежащие яйца птиц в гнезде. Транспортный или производственный шум действует угнетающе на человека – утомляет, раздражает, мешает сосредоточиться. Как только такой шум смолкает, человек испытывает чувство облегчения и покоя.

    Уровень шума в 20-30 децибел (дБ) практически безвреден для человека. Это естественный шумовой фон, без которого невозможна человеческая жизнь. Для “громких звуков” допустимая граница примерно 80 децибел Звук в 130 децибел уже вызывает у человека болевое ощущение, а в 150 – становится для него непереносимым. Звук в 180 децибел вызывает усталость металла, а при 190 заклепки вырываются из конструкций. Недаром в средние века существовала казнь “под колоколом”. Звон колокола медленно убивал человека.

    Любой шум достаточной интенсивности и длительности может привести к различной степени снижения слуховой активности.

    Помимо частоты и уровня громкости шума, на развитие тугоухости влияют возраст, слуховая чувствительность, продолжительность, характер действия шума, ряд других причин. Болезнь развивается постепенно, поэтому особенно важно заранее принять соответствующие меры защиты от шума. Под влиянием сильного шума, особенно высокочастотного, в органе слуха происходят необратимые изменения. При высоких уровнях шума понижение слуховой чувствительности наступает уже через 1-2 года работы, при средних уровнях она обнаруживается гораздо позднее, через 5-10 лет.

    Последовательность, с которой происходит утрата слуха, сейчас хорошо изучена. Сначала интенсивный шум вызывает временную потерю слуха. В нормальных условиях через день или два слух восстанавливается. Но если воздействие шума продолжается месяцами или, как это имеет место в промышленности, годами, восстановление не происходит, и временный сдвиг порога слышимости превращается в постоянный.

    Сначала повреждение нервов сказывается на восприятии высокочастотного диапазона звуковых колебаний (4 тыс. герц или выше), постепенно распространяясь на более низкие частоты. Высокие звуки “ф” и “с” становятся неслышными. Нервные клетки внутреннего уха оказываются настолько поврежденными, что атрофируются.

    Шумная музыка также притупляет слух. Группа специалистов обследовала молодежь, часто слушающую модную современную музыку. У 20 процентов юношей и девушек слух оказался притупленным в такой степени, как и 85-летних стариков.

    Шум мешает нормальному отдыху и восстановлению сил, нарушает сон. Систематическое недосыпание и бессонница ведут к тяжелым нервным расстройствам. Поэтому защите сна – этого “бальзама души” – от всякого рода раздражителей должно уделяться большое внимание.

    Шум оказывает вредное влияние на зрительный и вестибулярный анализаторы, снижает устойчивость ясного видения и рефлекторной деятельности. Шум способствует увеличению числа всевозможных заболеваний еще и потому, что он угнетающе действует на психику, способствует значительному расходованию нервной энергии, вызывает душевное не довольствие и протест.

    Исследования показали, что и неслышимые звуки также опасны. Ультразвук, занимающий заметное место в гамме производственных шумов, неблагоприятно воздействует на организм, хотя ухо его не воспринимает. Пассажиры самолета часто ощущают состояние недомогания и беспокойства, одной из причин которых является инфразвук. Инфразвуки вызывают у некоторых людей приступы морской болезни.

    Даже слабые инфразвуки могут оказывать на человека существенное воздействие, если они носят длительный характер. Некоторые нервные болезни, свойственные жителям промышленных городов, вызываются именно инфразвуками, проникающими сквозь самые толстые стены.

    Один из основных источников шума в городе – автомобильный транспорт, интенсивность движения которого постоянно растет. Наибольшие уровни шума 90-95 дБ отмечаются на магистральных улицах городов со средней интенсивностью движения 2-3 тыс. и более транспортных единиц в час.

    Уровень уличных шумов обуславливается интенсивностью, скоростью и характером (составом) транспортного потока. Кроме того, он зависит от планировочных решений (продольный и поперечный профиль улиц, высота и плотность застройки) и таких элементов благоустройства, как покрытие проезжей части и наличие зеленых насаждений. Каждый из этих факторов способен изменить уровень транспортного шума в пределах до 10 дБ.

    В промышленном городе обычно высок процент грузового транспорта на магистралях. Увеличение в общем потоке автотранспорта грузовых автомобилей, особенно большегрузных с дизельными двигателями, приводит к повышению уровней шума. В целом грузовые и легковые автомобили создают на территории городов тяжелый шумовой режим.

    Шум, возникающий на проезжей части магистрали, распространяется не только на примагистральную территорию, но и вглубь жилой застройки. Так, в зоне наиболее сильного воздействия шума находятся части кварталов и микрорайонов, расположенных вдоль магистралей общегородского значения (эквивалентные уровни шума от 67,4 до 76,8 дБ). Уровни шума, замеренные в жилых комнатах при открытых окнах, ориентированных на указанные магистрали, всего на 10-15 дБ ниже.

    Акустическая характеристика транспортного потока определяется показателями шумности автомобильности. Шум, производимый отдельными транспортными экипажами, зависит от многих факторов: мощности и режима работы двигателя, технического состояния экипажа, качества дорожного покрытия, скорости движения. Кроме того, уровень шума, как и экономичность эксплуатации автомобиля, зависит от квалификации водителя. Шум от двигателя резко возрастает в момент его запуска и прогревания (до 10 дБ). Движение автомобиля на первой скорости (до 40 км/ч) вызывает излишний расход топлива, при этом шум двигателя в 2 раза превышает шум, создаваемый им на второй скорости. Значительный шум вызывает резкое торможение автомобиля при движении на большой скорости. Шум заметно снижается, если скорость движения гасится за счет торможения двигателем до момента включения ножного тормоза.

    За последнее время средний уровень шума, производимый транспортом, увеличился на 12-14 дБ. Вот почему проблема борьбы с шумом в городе приобретает все большую остроту.

    Для защиты людей от вредного влияния городского шума необходима регламентация его интенсивности, спектрального состава, времени действия и других параметров. При гигиеническом нормировании в качестве допустимого устанавливают такой уровень шума, влияние которого в течение длительного времени не вызывает изменений во всем комплексе физиологических показателей, отражающих реакции наиболее чувствительных к шуму систем организма.

    В основу гигиенически допустимых уровней шума для населения положены фундаментальные физиологические исследования по определению действующих и пороговых уровней шума. В настоящее время шумы для условий городской застройки нормируют в соответствии с Санитарными нормами допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки (№ 3077-84) и Строительными нормами и правилами II 12-77 «Защита от шума». Санитарные нормы обязательны для всех министерств, ведомств и организаций, проектирующих, строящих и эксплуатирующих жилье и общественные здания, разрабатывающих проекты планировки и застройки городов, микрорайонов, жилых домов, кварталов, коммуникаций и т.д., а также для организаций, проектирующих, изготавливающих и эксплуатирующих транспортные средства, технологическое и инженерное оборудование зданий и бытовые приборы. Эти организации обязаны предусматривать и осуществлять необходимые меры по снижению шума до уровней, установленных нормами.

    Одним из направлений борьбы с шумом является разработка государственных стандартов на средства передвижения, инженерное оборудование, бытовые приборы, в основу которых положены гигиенические требования по обеспечению акустического комфорта.

    ГОСТ 19358-85 «Внешний и внутренний шум автотранспортных средств. Допустимые уровни и методы измерений» устанавливает шумовые характеристики, методы их измерения и допустимые уровни шума автомобилей (мотоциклов) всех образцов, принятых на государственные, межведомственные, ведомственные и периодические контрольные испытания. В качестве основной характеристики внешнего шума принят уровень звука, который не должен превышать для легковых автомобилей и автобусов 85-92 дБ, мотоциклов – 80-86 дБ. Для внутреннего шума приведены ориентировочные значения допустимых уровней звукового давления в октавных полосах частот: уровни звука составляют для легковых автомобилей 80 дБ, кабин или рабочих мест водителей грузовых автомобилей, автобусов – 85 дБ, пассажирских помещений автобусов – 75-80 дБ.

    Санитарные нормы допустимого шума обуславливают необходимость разработки технических, архитектурно-планировочных и административных мероприятий, направленных на создание отвечающего гигиеническим требованиям шумового режима, как в городской застройке, так и в зданиях различного назначения, позволяют сохранить здоровье и работоспособность населения.

    Снижение городского шума может быть достигнуто в первую очередь за счет уменьшения шумности транспортных средств.

    К градостроительным мероприятиям по защите населения от шума относятся: увеличение расстояния между источником шума и защищаемым объектом; применение акустически непрозрачных экранов (откосов, стен и зданий-экранов), специальных шумозащитных полос озеленения; использование различных приемов планировки, рационального размещения микрорайонов. Кроме того, градостроительными мероприятиями являются рациональная застройка магистральных улиц, максимальное озеленение территории микрорайонов и разделительных полос, использование рельефа местности и др.

    Существенный защитный эффект достигается в том случае, если жилая застройка размещена на расстоянии не менее 25-30 м от автомагистралей и зоны разрыва озеленены. При замкнутом типе застройки защищенными оказываются только внутриквартальные пространства, а внешние фасады домов попадают в неблагоприятные условия, поэтому подобная застройка автомагистралей нежелательна. Наиболее целесообразна свободная застройка, защищенная от стороны улицы зелеными насаждениями и экранирующими зданиями временного пребывания людей (магазины, столовые, рестораны, ателье и т.п.). Расположение магистрали в выемке также снижает шум на близрасположенной территории.

    Искусственные магнитные и электрические поля и их влияние на природу и человека.

    Магнитные и электромагнитные поля, то есть электромагнитное излучение, присутствуют везде. Однако напряженность их разнообразна и зависит от источника излучения. Постоянные магнитные поля создаются при помощи постоянных магнитов и электромагнитов, питаемых от источников постоянного тока.

    Переменные магнитные поля создаются специальными генераторами и другими электротехническими и радиоэлектронными устройствами. Например, поля низкой частоты 50-60 Гц генерируются сетями и потребителями переменного тока. В некоторых странах источниками электромагнитного излучения низкой частоты являются силовые сети железных дорог с частотой 16 и 2/3 Гц.

    Помимо переменных полей, создаваемых сетями питания, электрические устройства генерируют другие частоты в зависимости от их функций. Источниками электромагнитных излучений являются связь и радиовещание (телевидение, мобильные радиосистемы, телекоммуникации, радиосети, системы связи пожарных служб и полиции, военные системы связи, радиолюбительские передатчики, спутниковые системы связи, радары ПВО и т.п.). Источниками сильного магнитного поля являются промышленное и научное оборудование, используемое, например, при вторичной плавке алюминия, электрохимической и электроэрозионной обработке металлов; микроволновые и плавильные печи, электрические системы, ускорители частиц, сварочные агрегаты и др. Источниками сильного магнитного поля в медицине является оборудование, используемое при плазменном нагреве, томографии, гипетермии и диатермии, в электрохирургии и т.п.

    Влияние магнитного поля на живые организмы.

    Магнитные поля оказывают всестороннее влияние наокивые организмы. Механизм этого влияния весьма разнообразен и зависит от многих факторов, что может использоваться в различных практических целях.

    Магнитные поля являются разновидностью физической материи, осуществляющей связь и взаимодействие между электрически заряженными частицами.

    Известно, что ткани организма диамагнитны, то есть под влиянием магнитного поля не намагничиваются, однако многим составным элементам тканей (например, воде, форменным элементам крови) могут в магнитном поле сообщаться магнитные свойства.

    Физическая сущность действия магнитного поля на организм человека заключается в том, что оно оказывает влияние на движущиеся в теле электрически заряженные частицы, воздействуя, таким образом, на физико-химические и биохимические процессы. Основой биологического действия МП считают наведение ЭДС в токе крови и лимфы.

    По закону магнитной индукции в этих средах, как в хороших движущихся проводниках, возникают слабые токи, изменяющие течение обменных процессов. Кроме того, предполагают, что магнитные поля влияют на жидкокристаллические структуры воды, белков, полипептидов и других соединений.

    Квант энергии магнитных полей воздействует на электрические и магнитные взаимосвязи клеточных и внутриклеточных структур, изменяя метаболические процессы в клетке и проницаемость клеточных мембран.

    Тепловое воздействие, вызванное поглощением ВЧ излучения.

    Глубина проникновения ВЧ излучения в организм человека зависит от таких факторов, как размер тела и состав воды в организме человека. Особенно критична частота от 50 до 500 МГц. При повышении частоты снижается глубина проникновения. Этот эффект хорошо известен и широко применяется в медицине.

    При наличии неконтролируемого излучения опасность заключается в том, что механизмы регулирования температуры не реагируют на связанные с этим эффекты подогрева. Наши температурные датчики расположены в коже, где состав воды ниже. Эти датчики не способны засечь подогрев в теле, и поэтому потовые гланды (железы) не включаются в работу. Следовательно, температура тела поднимается локально или глобально. Эта опасность признана всеми и потому предписаны ограничения.

    Нетепловые эффекты ВЧ излучения.

    При модулированном ВЧ излучении возникают нетепловые эффекты на клеточном уровне. Это приводит к ослаблению иммунной системы, нарушению баланса гормонов и даже оказывает психологическое воздействие. Выявлено, например, биологическое действие переменных электромагнитных полей в диапазоне 0,2-100 кГц через изменение клеточной проницаемости биологических мембран.

    Воздействие электромагнитного излучения на жизненно важные объекты.

    В последние годы стал известен термин «электромагнитный терроризм», возникший из-за того, что в мире, в том числе и в России, появились «специалисты», создающие и использующие устройства, генерирующие электромагнитное излучение в широком диапазоне частот и мощностей, то есть создающие организованную помеху. Такое организованное электромагнитное излучение оказывает сильное «паразитное» воздействие на навигационную аппаратуру аэропортов; средства специальной связи милиции, скорой помощи, пожарных служб; вычислительные комплексы важного назначения и т.д.

    В связи с этим возникает необходимость создания и внедрения специальной высокочувствительной аппаратуры для обнаружения источников магнитного и электромагнитного излучения с целью локализации их деятельности. В отличие от смога, который мы видим и ощущаем, человек не может непосредственно чувствовать электромагнитные поля. Поэтому необходимо вооружить население соответствующей аппаратурой и портативными приборами, в том числе и индивидуального пользования.

    Влияние радиации на организмы

    Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

    Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один-два сантиметра; наиболее безобидное -излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

    Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

    0,03 – костная ткань

    0,03 – щитовидная железа

    0,12 – красный костный мозг

    0,12 – легкие

    0,15 – молочная железа

    0,25 – яичники или семенники

    0,30 – другие ткани

    1,00 – организм в целом.

    Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

    В таблице 1 приведены крайние значения допустимых доз радиации:

    Таблица 1.


    Орган

    Допустимая доза

    Красный костный мозг

    0,5-1 Гр.

    Хрусталик глаза

    0,1-3 Гр.

    Почки

    23 Гр.

    Печень

    40 Гр.

    Мочевой пузырь

    55 Гр.

    Зрелая хрящевая ткань

    >70 Гр.

    Примечание: Допустимая доза - суммарная доза,

    получаемая человеком в течение 5 недель




    Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через одну-две недели, а доза в 3-5 грамм грозит обернуться летальным исходом примерно половине облученных.

    Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

    Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

    В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

    Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний. Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

    Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

    Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

    Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

    Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных.

    При оценке риска НКДАР использует два подхода: при одном определяют непосредственный эффект данной дозы, при другом – дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

    Так, при первом подходе установлено, что доза в 1 г, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

    При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 г на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

    Оценки эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 г на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни – также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет.

    Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку:

    • объем легочной вентиляции очень большой

    • значения коэффициента усвоения в легких более высоки.

    Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха через верхние дыхательные пути частично оседают в полости рта и носоглотке. Отсюда пыль поступает в пищеварительный тракт. Остальные частицы поступают в легкие. Степень задержки аэрозолей в легких зависит от дисперсионности. В легких задерживается около 20% всех частиц; при уменьшении размеров аэрозолей величина задержки увеличивается до 70%.

    При всасывании радиоактивных веществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта в кровь. В зависимости от природы изотопа коэффициент изменяется в широких пределах: от сотых долей процента (для циркония, ниобия), до несколь-ких десятков процентов (водород, щелочноземельные элементы). Резорбция через неповрежденную кожу в 200-300 раз меньше, чем через желудочно-кишечный тракт, и, как правило, не играет существенной роли.

    При попадании радиоактивных веществ в организм любым путем они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

    Концентрации в крови долгоживущих изотопов в дальнейшем могут удерживаться практически на одном уровне в течение длительного времени вследствие обратного вымывания отложившихся веществ.

    Заряженные частицы. Проникающие в ткани организма - и -частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые, в конечном счете, также приводят к электрическим взаимодействиям.)

    Электрические взаимодействия. За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходного нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

    Физико-химические изменения. И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно-способные, как “свободные радикалы”.

    Химические изменения. В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки.

    Биологические эффекты. Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток, или такие изменения в них могут привести к раку.
    2. Типы экологических взаимодействий в экосистемах: хищничество, паразитизм, симбиоз и др.
    Теоретически взаимодействие популяций двух видов можно выразить в виде следующих комбинаций символов: 00, --, ++, +0, -0 , +-. Выделяют 9 типов наиболее важных взаимодействий между видами (по Ю. Одуму, 1986):

    - нейтрализм(00)- ассоциация двух видов популяций не сказывается ни на одном из них;

    - Взаимное конкурентное подавление (--) - обе популяции взаимно подавляют друг друга;

    - Конкуренция из-за ресурсов (--) - каждая популяция неблагоприятно воздействует на другую при недостатке пищевых ресурсов;

    - Аменсализм (-0) - одна популяция подавляет другую, но сама при этом не испытывает отрицательного влияния;

    - Паразитизм (+ - ) -популяция паразита наносит вред популяции хозяина;

    - Хищничество (+ -) - одна популяция неблагоприятно воздействует на другую в результате прямого нападения, но зависит от другой;

    - Комменсализм (+0) - одна популяция извлекает пользу от объединения с другой, а другой популяции это объединение безразлично;

    - Протокооперация (+ +) -обе популяции получают пользу от объединения;

    - Мутуализм (+ +) - связь благоприятна для роста и выживания отдельных популяций, причём в естественных условиях ни одна из них не может существовать без другой.

    Примечание: (0) - существенное взаимодействие между популяциями отсутствует; (+) - благоприятное действие на рост, выживание или другие характеристики популяции; ( - ) - ингибирующее действие на рост или другие характеристики популяции.
    Тип взаимодействия определённой пары видов может изменяться в зависимости от условий или от последовательных стадий их жизненных циклов. Иногда отношения двух видов можно охарактеризовать как паразиты, иногда - как комменсализм, а иногда они могут быть нейтральными.

    Девять описанных видов взаимодействий можно свести к двум более обобщенным типам - отрицательным (антибиотическим) и положительным (симбиотическим). В зависимости от состояния экосистемы к ней может быть, применим один из следующих принципов:

    В ходе эволюции и развития экосистемы существует тенденция к уменьшению роли отрицательных взаимодействий за счёт положительных, увеличивающих выживание обоих видов.

    В недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых.

    Взаимодействие популяций может быть взаимно полезным, полезным для одной из них и безразличным для другой.

    Более того, взаимоотношения могут меняться, они не заданы раз и навсегда.

    Далее на примерах подробнее рассмотрим типы взаимоотношений между организмами.

    В случае, когда одна популяция не испытывает влияния другой, т.е. между ними нет взаимодействия, то такая ситуация называется нейтрализмом. Например, белки и лоси в одном лесу не контактируют между собой. К антибиотическим отношениям можно отнести следующие формы отношений:

    • Конкуренцию;

    • Паразитизм;

    • Хищничество;

    • Аменсализм.


    Если популяции являются антагонистами в борьбе за пищу, место обитания и другие необходимые для жизни факторы, то их отношения называют конкуренцией.

    В природе возникают ситуации, когда один вид наносит ущерб другому, но в то же время не может существовать без него. Такой тип взаимоотношений называют либо паразитизмом (когда представители какого-либо вида обитают внутри или на поверхности другого - например, паразитические черви, обитающие внутри млекопитающих и человека), либо хищничеством (когда представители одного вида ловят и поедают представителей другого - например, отношения между волками и грызунами и др.).

    При аменсализме страдает один вид, а другой развивается нормально: например, плесневый гриб Penicillium выделяет пенициллин - вещество, подавляющее рост различных бактерий, но бактерии не оказывают влияния на плесневый гриб. При клинических испытаниях пенициллина было выявлено, что при его применении увеличилось число грибковых заболеваний, поскольку в естественных условиях развитие грибов сдерживается присутствием бактерий. При антогонизме - аменсализме, паразитизме и хищничестве - ошибочно полагать, что отношения между хозяином и паразитом или хищником и жертвой всегда вредны для хозяина или жертвы. Со временем под влиянием естественного отбора губительное действие паразита или хищника ослабевает, поскольку паразит может сохраниться лишь в том случае, если перейдет на какой-либо новый вид, пригодный в качестве хозяина. Если же паразит не найдет нового хозяина, то он погибает сам.
    К симбиотическим можно отнести следующие формы отношений:

    • Собственно симбиоз (протокооперация);

    • Мутуализм;

    • Комменсализм.


    Симбиоз - сожительство (от греч. "син" - вместе, "биос" - жизнь) представляет такую форму взаимоотношений, при которой оба партнера или один из них извлекает пользу от другого. Симбиоз - понятие широкое и включает много разных вариантов отношений между видами. Если присутствие одной популяции благоприятно для другой, но не является необходимым условием существования, то такие отношения носят характер протокооперации (на панцирях многих ракообразных обитают различные кишечнополостные, которые получают пищу, когда его хозяин ловит и поедает других животных, однако они могут существовать и раздельно). Протокооперацию можно в определенном смысле отнести к симбиозу. Существуют и другие формы симбиоза: мутуализм, комменсализм.

    В случае, когда оба вида извлекают выгоду из совместного существования и не могут жить самостоятельно, то такая ассоциация называется мутуализмом. Примером мутуализма являются термиты, в кишечнике которых обитают жгутиковые (простейшие), имеющие ферменты для разложения древесины, которой питаются термиты.

    Формирование мутуализма проходит через несколько стадий: сначала ассоциация носит характер комменсализма (т.е. такой тип взаимоотношений, когда один из двух совместно обитающих видов - комменсал - извлекает пользу из совместного существования, не причиняя, однако, вреда другому виду), а затем через фазу протокооперации отношения в ассоциации переходят в мутуализм. Комменсализм широко представлен в океане, где практически в каждой норе, вырытой червем, и в каждой раковине обитают гости, использующие убежище хозяина и не приносящие ему ни пользы, ни вреда.

    Рыбы-лоцманы, следующие за акулами, черепахами, дельфинами, кормятся остатками пищи этих животных, а также их экскрементами и паразитами. Такие отношения между видами называют нахлебничеством (один из вариантов комменсализма). Другая форма комменсализма получила название квартиранства: в полости голотурии "морского огурца" находят убежище разнообразные мелкие виды животных. Растения - эпифиты (от греч. "эпи" - на, сверх, "фитом" - растение) поселяются на деревьях. Например, на деревьях поселяются водоросли, лишайники, мхи, орхидеи - они питаются за счет фотосинтеза и отмирающих тканей хозяина, но не их соками.
    3. Плата за загрязнение окружающей среды.
    Законом "Об охране окружающей среды" установлена плата за негативное воздействие на окружающую среду, которую вносят организации и физические лица, деятельность которых оказывает негативное воздействие на окружающую среду. Плата за негативное воздействие на окружающую среду (или плата за загрязнение окружающей среды) является формой компенсации ущерба, наносимого загрязнением окружающей природной среде, и перечисляется предприятиями, учреждениями, организациями в бесспорном порядке.

    Плата за негативное воздействие на окружающую среду взимается с природопользователей, осуществляющих следующие виды воздействия на окружающую природную среду:

    • выброс в атмосферу загрязняющих веществ от стационарных и передвижных источников;

    • сброс загрязняющих веществ в поверхностные и подземные водные объекты;

    • размещение отходов.


    Порядок определения платы и ее предельных размеров за загрязнение окружающей природной среды, размещение отходов, другие виды вредного воздействия, утвержден постановлением Правительства Российской Федерации от 28 августа 1992 года N 632 (с изменениями на 12 февраля 2003 года). П остановлением Правительства РФ от 12 июня 2003 года N 344 установлены два вида нормативов платы по каждому ингредиенту загрязняющего вещества (отхода), с учетом степени опасности для окружающей природной среды и здоровья населения :

    - за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления в пределах допустимых нормативов;

    - за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления в пределах установленных лимитов (временно согласованных нормативов).
    Для отдельных регионов и бассейнов рек устанавливаются коэффициенты к нормативам платы, учитывающие экологические факторы - природно-климатические особенности территорий, значимость природных и социально-культурных объектов. Постановлением Правительства РФ от 12 июня 2003 года N 344 установлено, что нормативы платы за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления применяются с использованием коэффициентов, учитывающих экологические факторы и дополнительного коэффициента 2 для особо охраняемых природных территорий, в том числе лечебно-оздоровительных местностей и курортов, а также для районов Крайнего Севера и приравненных к ним местностей, Байкальской природной территории и зон экологического бедствия.

    Нормативы платы за выбросы в атмосферный воздух загрязняющих веществ установлены в рублях за 1 тонну по 214 видам загрязняющих веществ. Нормативы платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты сбросы загрязняющих веществ в поверхностные и подземные водные объекты установлены в рублях за 1 тонну по 198 видам загрязняющих веществ.
    Расчет платежей производится организациями (индивидуальными предпринимателями) с применением нормативов платы и коэффициентов, учитывающих экологические факторы, утвержденные постановлением Правительства Российской Федерации от 12 июня 2003 года N 344. При расчете используются дифференцированные ставки платы за негативное воздействие на окружающую среду, которые определяют умножением нормативов платы на коэффициенты, учитывающие экологические факторы по территориям и бассейнам рек, и при необходимости на дополнительный коэффициент 2 для особо охраняемых природных территорий, в том числе лечебно-оздоровительных местностей и курортов, районов Крайнего Севера и приравненных к ним местностей, Байкальской природной территории и зон экологического бедствия. Платежи рассчитываются исходя из массы загрязняющих веществ, поступающих в окружающую среду, указанных в выданных организациям разрешениях на выбросы, сбросы загрязняющих веществ и размещение отходов.

    Порядком определения платы и ее предельных размеров за загрязнение окружающей природной среды, размещение отходов, другие виды вредного воздействия, утвержденным, Постановлением Правительства РФ от 28.08.92 г. N 632 (с изменениями на 12 февраля 2003 года) определены три вида платежей за загрязнение окружающей среды:

    - в размерах, не превышающих установленные природопользователю предельно допустимые нормативы выбросов, сбросов загрязняющих веществ, объемы размещения отходов;

    - в пределах установленных лимитов (временно согласованных нормативов);

    - за сверхлимитное загрязнение окружающей среды.

    При загрязнении окружающей природной среды в результате аварии по вине природопользователя плата взимается как за сверхлимитное загрязнение.

    Плата за загрязнение окружающей природной среды в размерах, не превышающих установленные природопользователю предельно допустимые нормативы выбросов и сбросов загрязняющих веществ, объемы размещения отходов определяется путем умножения соответствующих дифференцированных ставок платы на величину указанных видов загрязнения и суммирования полученных произведений по видам загрязнения.

    Плата за загрязнение окружающей природной среды в пределах установленных лимитов определяется путем умножения соответствующих дифференцированных ставок платы на разницу между лимитными и предельно допустимыми выбросами, сбросами загрязняющих веществ, объемами размещения отходов и суммирования полученных произведений по видам загрязнения.

    Плата за сверхлимитное загрязнение окружающей природной среды определяется путем умножения соответствующих дифференцированных ставок платы за загрязнение в пределах установленных лимитов на величину превышения фактической массы выбросов, сбросов загрязняющих веществ, объемов размещения отходов над установленными лимитами, суммирования полученных произведений по видам загрязнения и умножения этих сумм на пятикратный повышающий коэффициент.

    В случае отсутствия у природопользователя оформленного в установленном порядке разрешения на выброс, сброс загрязняющих веществ, размещение отходов вся масса загрязняющих веществ учитывается как сверхлимитная.


    Список литературы





    1. Горшков С.П. Экзодинамические процессы освоенных территорий. – М.: Недра, 1982.

    2. Григорьев А.А. Города и окружающая Среда. Космические исследования. – М.: Мысль, 1982.

    3. Никитин Д.П., Новиков Ю.В. Окружающая Среда и человек. – М.: 1986.

    4. Одум Ю. Основы экологии. – М.: Мир, 1975.

    5. Радзевич Н.Н., Пашканг К.В. Охрана и преобразование природы. – М.: Просвещение, 1986.


    написать администратору сайта