Главная страница
Навигация по странице:

  • 1. Электромагниты

  • КОНТРОЛЬНАЯ РАБОТА ПО АВТОМАТИЗАЦИИ. титульн контроль АВТОМАТИЗАЦ. 13. Вариант Электромагниты Синхронные шаговые двигатели Гидравлические серводвигатели Пневматические серводвигатели Электромагниты


    Скачать 124.59 Kb.
    Название13. Вариант Электромагниты Синхронные шаговые двигатели Гидравлические серводвигатели Пневматические серводвигатели Электромагниты
    АнкорКОНТРОЛЬНАЯ РАБОТА ПО АВТОМАТИЗАЦИИ
    Дата12.03.2020
    Размер124.59 Kb.
    Формат файлаdocx
    Имя файлатитульн контроль АВТОМАТИЗАЦ.docx
    ТипКонтрольная работа
    #111826
    страница1 из 6
      1   2   3   4   5   6



    Контрольная работа
    по дисциплине «АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ И КОНТРОЛЯ В ПРОИЗВОДСТВЕ МАШИН»
    13. Вариант

    13. Вариант

    1. Электромагниты

    2. Синхронные шаговые двигатели

    3. Гидравлические серводвигатели

    4. Пневматические серводвигатели

    1. Электромагниты
    Электромагнит создает магнитное поле с помощью обмотки, обтекаемой электрическим током. Для того чтобы усилить это поле и направить магнитный поток по определенному пути, в большинстве электромагнитов имеется магнитопровод, выполняемый из магнитномягкой стали.

    Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах - электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи - телефония, телеграфия и радио немыслимы без их применения. 

    Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах. 

    Вес электромагнитов колеблется от долей грамма до сотен тонн, а потребляемая при их работе электрическая мощность - от милливатт до десятков тысяч киловатт. 

    Особой областью применения электромагнитов являются электромагнитные механизмы. В них электромагниты используются в качестве привода для осуществления необходимого поступательного перемещения рабочего органа или поворота его в пределах ограниченного угла, или для создания удерживающей силы. 

    Примером подобных электромагнитов являются тяговые электромагниты, предназначенные для совершения определенной работы при перемещении тех или иных рабочих органов; электромагнитные замки; электромагнитные муфты сцепления и торможения и тормозные электромагниты; электромагниты, приводящие в действие контактные устройства в реле, контакторах, пускателях, автоматических выключателях; подъемные электромагниты, электромагниты вибраторов и т. п. 

    В ряде устройств наряду с электромагнитами или взамен их используются постоянные магниты (например, магнитные плиты металлорежущих станков, тормозные устройства, магнитные замки и т. п.). 

    Электромагниты весьма разнообразны по конструктивным выполнениям, которые различаются по своим характеристикам и параметрам, поэтому классификация облегчает изучение процессов, происходящих при их работе. 

    В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы электромагниты подразделяются на три группы:

    - электромагниты постоянного тока нейтральные;

    - электромагниты постоянного тока поляризованные;

    - электромагниты переменного тока. 

    Нейтральные электромагниты

    В нейтральных электромагнитах постоянного тока рабочий магнитный поток создается с помощью обмотки постоянного тока. Действие электромагнита зависит только от величины этого потока и не зависит от его направления, а следовательно, от направления тока в обмотке электромагнита. При отсутствии тока магнитный поток и сила притяжения, действующая на якорь, практически равны нулю. 

    Поляризованные электромагниты

    Поляризованные электромагниты постоянного тока характеризуются наличием двух независимых магнитных потоков:(поляризующего и рабочего. Поляризующий магнитный поток в большинстве случаев создается с помощью постоянных магнитов. Иногда для этой цели используют электромагниты. Рабочий поток возникает под действием намагничивающей силы рабочей или управляющей обмотки. Если ток в них отсутствует, на якорь действует сила притяжения, создаваемая поляризующим магнитным потоком. Действие поляризованного электромагнита зависит как от величины, так и от направления рабочего потока, т. е. от направления тока в рабочей обмотке. 

    Электромагниты переменного тока

    В электромагнитах переменного тока питание обмотки осуществляется от источника переменного тока. Магнитный поток, создаваемый обмоткой, по которой проходит переменный ток, периодически изменяется по величине и направлению (переменный магнитный поток), в результате чего сила электромагнитного притяжения пульсирует от нуля до максимума с удвоенной частотой по отношению к частоте питающего тока. 

    Однако для тяговых электромагнитов снижение электромагнитной силы ниже определенного уровня недопустимо, так как это приводит к вибрации якоря, а в отдельных случаях к прямому нарушению нормальной работы. Поэтому в тяговых электромагнитах, работающих при переменном магнитном потоке, приходится прибегать к мерам для уменьшения глубины пульсации силы (например, применять экранирующий виток, охватывающий часть полюса электромагнита).

    Кроме перечисленных разновидностей, в настоящее время большое распространение получили электромагниты с выпрямлением тока, которые по питанию могут быть отнесены к электромагнитам переменного тока, а по своим характеристикам приближаются к электромагнитам постоянного тока. Поскольку все же имеются некоторые специфические особенности их работы. 

    В зависимости от способа включения обмотки различают электромагниты с последовательными и параллельными обмотками. 

    Обмотки последовательного включения, работающие при заданном токе, выполняются с малым числом витков большого сечения. Ток, проходящий по такой обмотке, практически не зависит от ее параметров, а определяется характеристиками потребителей, включенных .последовательно с обмоткой. 

    Обмотки параллельного включения, работающие при заданном напряжении, имеют, как правило, весьма большое число витков и выполняются из провода малого сечения. 

    По характеру работы обмотки электромагниты разделяются на работающие в длительном, прерывистом и кратковременном режимах. 

    По скорости действия электромагниты могут быть с нормальной скоростью действия, быстродействующие и замедленно действующие. Это разделение является несколько условным и свидетельствует главным образом о том, приняты ли специальные меры для получения необходимой скорости действия. 

    Все перечисленные выше признаки накладывают свой отпечаток на особенности конструктивных выполнений электромагнитов.
    2. Синхронные шаговые двигатели

    В системах управления электроприводами с применением уже рассмотренных нами типов двигателей для отработки заданного угла или перемещения используют датчики обратной связи по углу или положению выходного вала исполнительного двигателя.



    Система отработки угла (положения) выходного вала двигателя с использованием датчика обратной связи.

    Если в качестве исполнительного двигателя использовать синхронный шаговый двигатель, то можно обойтись без датчика обратной связи (Дт) и упростить систему управления двигателем (СУ), так как отпадает необходимость использования в ней цифро-аналоговых (ЦАП) и аналого-цифровых (АЦП) преобразователей.

    Шаговыми двигателями называются синхронные двигатели, преобразующие команду, заданную в виде импульсов, в фиксированный угол поворота двигателя или в фиксированное положение подвижной части двигателя без датчиков обратной связи.

    Мощность шаговых двигателей лежит в диапазоне от единиц ватт до одного киловатта.

    Шаговый двигатель имеет не менее двух положений устойчивого равновесия ротора в пределах одного оборота.

    Напряжение питания обмоток управления шагового двигателя представляет собой последовательность однополярных или двуполярных прямоугольных импульсов, поступающих от электронного коммутатора (К). Результирующий угол соответствует числу переключений коммутатора, а частота вращения двигателя соответствует частоте переключений электронного коммутатора.

    Шаговые двигатели различаются по конструктивным группам:

    - активного типа (с постоянными магнитами);

    - реактивного типа;

    - индукторные.

    Шаговые синхронные двигатели активного типа. В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса, на которых расположены катушки обмоток управления.

    Принцип действия шагового двигателя активного типа рассмотрим на примере двухфазного двигателя.



    Принципиальная схема управления шаговым двигателем

    Различают два вида коммутации обмотки шагового двигателя:

    - симметричная;

    - несимметричная.

    При симметричной системе коммутации на всех четырех тактах возбуждается одинаковое число обмоток управления. 

    При несимметричной системе коммутации четным и нечетным тактам соответствует различное число возбужденных обмоток управления.

    Ротор у шагового двигателя активного типа представляет собой постоянный магнит, при числе пар полюсов больше 1, выполненный в виде "звездочки".

    Число тактов КТ системы управления называют количеством состояний коммутатора на периоде его работы T. Для симметричной системы управления КТ =4, а для несимметричной КТ =8.

    В общем случае число тактов КТ зависит от числа обмоток управления (фаз статора) mу и может быть посчитано по формуле:






    где

    n1=1 при симметричной системе коммутации;

    n1=2 при несимметричной системе коммутации;

    n2=1 при однополярной коммутации;

    n2=2 при двуполярной коммутации.



    а)

    б)

    Схемы, иллюстрирующие положения ротора шагового двигателя с постоянными магнитами при подключении к источнику питания одной (а) и двух обмоток (б)

    При однополярной коммутации ток в обмотках управления протекает в одном направлении (рис. 4.а); при двуполярной - в обеих (рис. 4.б).

    Синхронизирующий (электромагнитный) момент машины является результатом взаимодействия потока ротора с дискретно вращающимся магнитным полем статора. Под действием этого момента ротор стремится занять такое положение в пространстве машины, при котором оси потоков ротора и статора совпадают.

    Мы рассмотрели шаговые синхронные машины с одной парой полюсов (р=1). Реальные шаговые микродвигатели являются многополюсными (р>1).

    Для примера приведем двуполюсный трехфазный шаговый двигатель:



    Двуполюсный трехфазный шаговый двигатель

    Двигатель с р парами полюсов имеет зубчатый ротор в виде звездочки с равномерно расположенными вдоль окружности 2р постоянными магнитами. Для многополюсной машины величина углового шага ротора равна:






    Чем меньше шаг машины, тем точнее (по абсолютной величине) будет отрабатываться угол. Увеличение числа пар полюсов связано с технологическими возможностями и увеличением потока рассеяния. Поэтому р= 4...6.

    Величина шага ротора активных шаговых двигателей составляет десятки градусов.

    Реактивные шаговые двигатели. У активных шаговых двигателей есть один существенный недостаток: у них крупный шаг, который может достигать десятков градусов.

    Реактивные шаговые двигатели позволяют редуцировать частоту вращения ротора. В результате можно получить шаговые двигатели с угловым шагом, составляющим доли градуса.

    Отличительной особенностью реактивного редукторного двигателя является расположение зубцов на полюсах статора.



    а)

    б)

    Принцип действия реактивного редукторного шагового двигателя: (а) - исходное положение устойчивого равновесия; (б) - положение устойчивого равновесия. cдвинутое на один шаг ()

    Если зубцы ротора соосны с одной диаметрально расположенной парой полюсов статора, то они сдвинуты относительно каждой из оставшихся трех пар полюсов статора соответственно на ј, Ѕ и ѕ зубцового деления.

    При большом числе зубцов ротора Zр его угол поворота значительно меньше угла поворота поля статора.

    Величина углового шага редукторного реактивного шагового двигателя определится выражением:






    В выражении для КТ величину n2 следует брать равной 1, т. к. изменение направления поля не влияет на положение ротора.

    Электромагнитный синхронизирующий момент реактивного двигателя обусловлен, как и в случае обычного синхронного двигателя, разной величиной магнитных сопротивлений по продольной и поперечной осям двигателя.

    Основным недостатком шагового реактивного двигателя является отсутствие синхронизирующего момента при обесточенных обмотках статора.

    Повышение степени редукции шаговых двигателей, как активного типа, так и реактивного, можно достичь применением двух, трех и многопакетных конструкций. Зубцы статора каждого пакета сдвинуты относительно друг друга на часть зубцового деления. Если число пакетов два, то этот сдвиг равен 1/2 зубцового деления, если три, то - 1/3, и т.д. В то же время роторы-звездочки каждого из пакетов не имеют пространственного сдвига, т.е. оси их полюсов полностью совпадают.

    Такая конструкция сложнее в изготовлении и дороже однопакетной, и, кроме того, требует сложного коммутатора.

    Индукторные (гибридные) шаговые двигатели. Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

    В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д. Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора. При этом синхронизирующий момент шагового индукторного двигателя по природе является реактивным и создается намагничивающей силой обмоток статора, а постоянный магнит, расположенный либо на статоре, либо на роторе, создает фиксирующий момент, удерживающий ротор двигателя в заданном положении при отсутствии тока в обмотках статора.

    По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага больше синхронизирующий момент, лучшие энергетические и динамические характеристики.

    Линейные шаговые синхронные двигатели. При автоматизации производственных процессов весьма часто необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т.д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

    Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.



    Схема, иллюстрирующая работу линейного шагового двигателя

    Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом.

    Зубцовые деления статора и подвижной части двигателя равны. Зубцовые деления в пределах одного магнитопровода ротора сдвинуты на половину зубцового деления τ/2. Зубцовые деления второго магнитопровода сдвинуты относительно зубцовых делений первого магнитопровода на четверть зубцового деления τ/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

    Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя. Разница лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, т.е. на четверть зубцового деления τ/4.

    ,




    где

    KТ - число тактов схемы управления.

    Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

    В линейных шаговых двигателях применяют магнито-воздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора. Через специальные форсунки под ротор нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между статором и ротором создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором. При этом обеспечивается минимальное сопротивление движению ротора и высокая точность позиционирования.

    Режимы работы синхронного шагового двигателя. Шаговый двигатель работает устойчиво, если в процессе отработки угла при подаче на его обмотки управления серии импульсов не происходит потери ни одного шага. Это значит, что в процессе отработки каждого из шагов ротор двигателя занимает устойчивое равновесие по отношению к вектору результирующей магнитной индукции дискретно вращающегося магнитного поля статора.

    Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при котором шаговый двигатель отрабатывает до прихода следующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0. При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла. Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

    В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потока статора.

    Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

    Предельная механическая характеристика- это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

    С увеличением частоты управляющих импульсов величина максимального момента падает, что объясняется действием демпфирующего момента (вызванного перечисленными выше потерями), и ЭДС самоиндукции становится соизмеримой с напряжением источника питания.

    Приемистость- это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

    Приемлемость падает с увеличением нагрузки.
      1   2   3   4   5   6


    написать администратору сайта