2. Сердце, его гемодинамическая функция. Изменение давления и объема крови в полостях сердца в различные фазы кардиоцикла. Сердечный цикли его фазовая структура. Систолический и минутный
Скачать 0.96 Mb.
|
систолическое, или СД (иногда его называют в народе верхнее) – давление крови в артериальных сосудах в период сокращения сердечной мышцы диастолическое, или ДД (нижнее) – давление крови вовремя расслабления сердечной мышцы. Артериальное давление зависит от вида (размера или калибра) сосуда чем крупнее сосуд, тем выше давление. Общепринято считать нормальным давление в плечевой артерии, именно в ней его измеряют при помощи тонометра. Многие грамотные пациенты умеют измерять АД и наблюдать его изменения, но далеко не все знают, какое в норме должно быть давление у детей. Поговорим об этом в данной статье, а также расскажем о том, каковы причины и симптомы повышения или понижения АДу малышей. Мозговое, коронарное и легочное кровообращение, их особенности Поперечнополосатая мускулатура сердца в отличие от скелетной характеризуется высоким потреблением энергии аэробного происхождения, что обусловливает значительную потребность миокарда в интенсивном кровоснабжении. Доставка артериальной крови в миокард осуществляется венечными (коронарными) артериями, которые, разветвляясь и широко анастомозируя во всех слоях и отделах сердца, образуют густую сеть капилляров и практически каждое мышечное волокно снабжено собственным обменным сосудом. Венозный отток от миокарда осуществляется через широкий венечный (коронарный) синус, открывающийся в полость правого предсердия. Прекращение кровотока по коронарным артериям при их закупорке или значительном спазме приводит к стойкому снижению кровоснабжения сердечной мышцы и к развитию инфаркта миокарда, что сопровождается нарушением нагнетательной функции сердца и может привести к смерти. Поскольку в системе коронарного русла достаточно хорошо представлен модульный принцип организации, аналогичные изменения кровотока в пределах отдельных сосудистых модулей могут проявиться в виде микроинфарктов, осложняющихся нарушением проводимости и сократимости сердечной мышцы. В состоянии функционального покоя у взрослого человека коронарный кровоток составляет 60—70 мл г мин. От общего сердечного выброса кровоснабжение миокарда составляет 4—5%, те. в среднем 200—250 мл/мин. В условиях интенсивной физической работы, когда происходит активация сердечной деятельности, объемная скорость кровотока в сердечной мышце возрастает, достигая 350—400 мл г/мин (функциональная гиперемия. Коронарный кровоток существенно изменяется в зависимости от периода сердечного цикла. В период систолы желудочков интенсивность коронарного кровотока (особенно в миокарде левого желудочка) снижается, а вовремя диастолы увеличивается. Описанные периодические колебания объясняются двумя основными причинами первая из них обусловлена пульсирующим характером давления в аорте, а вторая (основная) — изменениями напряжения в стенке миокарда. В систолу, когда это напряжение значительно возрастает, сдавливаются сосуды среднего и внутреннего слоев миокарда, движение крови в левой коронарной артерии затруднено. В диастолу напряжение в миокарде падает, проходимость сосудов восстанавливается и кровоток увеличивается. В увеличении кровотока через миокард в период диастолы не исключена роль реактивной (постокклюзионной) гиперемии. Несмотря на выраженное снижение кровотока вовремя систолы, метаболические потребности миокарда при нормальной частоте сокращений сердца полностью удовлетворяются за счет ряда функциональных особенностей 1) высокой экстракцией кислорода миоглобином мышцы сердца (до 75%); 2) высокой объемной скоростью кровотока в миокарде 3) высокой растяжимостью коронарных сосудов 4) фазными колебаниями кровотока в венах сердца противоположной направленности, а именно ускорением оттока крови в систолу и замедлением его в диастолу. Вместе стем в условиях тахикардии, когда происходит укорочение диастолы, эти функциональные особенности в меньшей степени компенсируют систолическое ограничение кровоснабжения сердца. Регуляция венечного кровообращения. Представлена местными и дистантными механизмами. Для сосудов миокарда характерна высокая выраженность базального тонуса, а также миогенная метаболическая активность гладких мышечных клеток (ГМК). Диапазон ауторегуляции кровотока в сердечной мышце находится в пределах 70—160 мм рт.ст. Метаболическая регуляция коронарных сосудов проявляет наибольшую активность по отношению к тканевому рО2, концентрациям аденозина и метаболитам макроэргических соединений. Вопрос о характере нервной регуляции коронарного кровообращения не до конца ясен. Считают, что симпатические адренергические нервные волокна вызывают в ряде случаев (физическая работа, стенические отрицательные эмоции) расширение венечных сосудов и увеличение кровотока в миокарде. Наряду с этим в других условиях (астенические отрицательные эмоции, боль и т. п) наблюдаются симпатические коронаросуживающие эффекты. Причины таких противоположных влияний связывают с избирательной настройкой чувствительности α- и β-адренорецепторов, широко представленных в ГМК коронарных сосудов, а также с концентрацией катехоламинов, которые в зависимости от «дозы-эффекта» вмешиваются в метаболизм ГМК и интерстициальной ткани. Парасимпатические холинергические влияния скорее всего опосредованно, угнетая сократительную активность сердечной мышцы, снижают ее метаболические потребности и тем самым приводят к снижению кровоснабжения миокарда. Легочное кровообращение Важнейшей особенностью организации кровоснабжения легких является ее двухкомпонентный характер, поскольку легкие получают кровь из сосудов малого круга кровообращения и бронхиальных сосудов большого круга кровообращения. Функциональное значение сосудистой системы малого круга кровообращения состоит в обеспечении газообменной функции легких, тогда как бронхиальные сосуды удовлетворяют собственные циркуляторно-метаболические потребности легочной ткани. Легочная артерия и ее ветви диаметром более 1 мм являются сосудами эластического типа, что способствует значительному сглаживанию пульсации крови, поступающей вовремя систолы правого желудочка в легкие. Более мелкие артерии (диаметром от 1 мм до 100 мкм) относят к артериям мышечного типа. Они обусловливают величину гидродинамического сопротивления в малом круге кровообращения. В самых мелких артериях диаметром менее 100 мкм) ив артериолах содержание ГМК прогрессивно снижается ив артериолах диаметром менее 45 мкм они полностью отсутствуют. Поскольку безмышечные артериолы тесно связаны с окружающей альвеолярной паренхимой, интенсивность кровоснабжения легких непосредственно зависит от интенсивности вентиляции альвеол. Капилляры легких образуют на поверхности альвеол очень густую сеть и при этом на одну альвеолу приходится несколько капилляров. В связи стем что стенки альвеол и капилляров тесно контактируют, образуя как бы единую альвеолярно-капиллярную мембрану, создаются наиболее благоприятные условия для эффективных вентиляционно-перфузионных взаимоотношений. В условиях функционального покоя у человека капиллярная кровь находится в контакте с альвеолярным воздухом в течение примерно 0,75 с. При физической работе продолжительность контакта укорачивается более чем в два раза и составляет в среднем 0,35 с. В результате слияния капилляров образуются характерные для легочной сосудистой системы безмышечные посткапиллярные венулы, трансформирующиеся в венулы мышечного типа и далее в легочные вены. Особенностью сосудов венозного отдела являются их тонкостенность и слабая выраженность ГМК. Структурные особенности легочных сосудов, в частности артерий, определяют большую растяжимость сосудистого русла, что создает условия для более низкого сопротивления (приблизительно враз меньше, чем в системе большого круга кровообращения, а следовательно, более низкого кровяного давления. В связи с этим система малого круга кровообращения относится к области низкого давления. Давление в легочной артерии составляет в среднем 15—25 мм рт.ст., а в венах — 6—8 мм рт.ст. Градиент давления равен примерно 9—17 мм рт.ст., те. значительно меньше, чем в большом круге кровообращения. Несмотря на это, повышение системного АД или же значительное увеличение кровотока (при активной физической работе человека) существенно не влияет на трансмуральное давление в легочных сосудах из-за их большей растяжимости. Большая растяжимость легочных сосудов определяет еще одну важную функциональную особенность этого региона, заключающуюся в способности депонировать кровь и тем самым предохранять легочную ткань от отека при увеличении минутного объема кровотока. Минутный объем крови в легких соответствует минутному объему крови в большом круге кровообращения ив условиях функционального покоя составляет в среднем 5 л/мин. При активной физической работе этот показатель может возрасти до 25 л/мин. Распределение кровотока в легких характеризуется неравномерностью кровоснабжения верхних и нижних долей, так как низкое внутрисосудистое давление определяет высокую зависимость легочного кровотока от гидростатического давления. Так, в вертикальном положении верхушки легкого расположены выше основания легочной артерии, что практически уравнивает АД в верхних долях легких с гидростатическим давлением. По этой причине капилляры верхних долей слабо перфузируются, тогда как в нижних долях благодаря суммированию АД с гидростатическим давлением кровоснабжение обильное. Описанная особенность легочного кровообращения играет важную роль в установлении перфузионно-вентиляционных отношений вдыхательной системе. Интенсивность кровоснабжения легких зависит от циклических изменений плеврального и альвеолярного давлений в различные фазы дыхательного цикла. Вовремя вдоха, когда плевральное и альвеолярное давление уменьшаются, происходит пассивное расширение крупных внелегочных и внутрилегочных сосудов, сопротивление сосудистого русла дополнительно снижается и кровоснабжение легких в фазу вдоха увеличивается. Регуляция легочного кровообращения. Местная регуляция легочного кровотока в основном представлена метаболическими факторами, ведущая роль среди которых принадлежит рО2 и рСО2. При снижении рО2 и/или повышении рСО2 происходит местная вазоконстрикция легочных сосудов. Следовательно, особенностью местной регуляции кровоснабжения легких является строгое соответствие интенсивности локального кровотока уровню вентиляции данного участка легочной ткани. Нервная регуляция легочного кровообращения осуществляется в основном симпатическими сосудосуживающими волокнами. Природа сосудорасширяющих нервных влияний пока не выяснена. Система легочного кровообращения выделяется среди всех регионов наибольшей функциональной связью с центральной регуляцией системной гемодинамики в большом круге кровообращения. Известно, что рефлексы саморегуляции кровообращения с баро- и хеморецепторов сонного (каротидного) синуса сопровождаются активными изменениями легочного кровотока. В свою очередь сосуды малого круга кровообращения являются мощной рефлексогенной зоной, порождающей рефлекторные изменения в сердечно-сосудистой системе. Гуморальная регуляция легочного кровообращения в значительной степени обусловлена влиянием таких биологически активных веществ, как ангиотензин, серотонин, гистамин, простагландины, которые вызывают в основном вазоконстрикцию в легких и повышение кровяного давления в легочных артериях. Активность других, широко распространенных в организме гуморальных факторов (адреналин, норадреналин, ацетилхолин) в системе регуляции легочного кровотока выражена в меньшей степени. Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в обмене жидкости и различных веществ между кровью и тканями. Характеристика микроциркуляторного русла (рис. 11.18). Длина капилляров варьирует в пределах 0,5-1,0 мм, диаметр составляет 5—10 мкм кровяное давление в артериальном конце равно 30 мм рт. ст, в венозном — 15 мм рт. ст, средняя скорость кровотока — около 1 мм/с. В капиллярах, через их стенку, осуществляется транспорт веществ, в результате чего клетки органов и тканей обмениваются с кровью теплом, водой и газом, другими веществами, образуется лимфа. Время прохождения эритроцита через капилляр большого круга кровообращения составляет 2,5 св малом круге — 0,3—1 с. Его определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Транскапиллярный обмен веществ происходит путем фильтрации, простой и облегченной диффузии, трансцитоза и осмоса. Объем транспорта веществ зависит от количества функционирующих капилляров и их проницаемости, от линейной скорости кровотока, от гидростатического и онкотического давления в капиллярах. В покое во многих тканях функционирует лишь 25-30 % капилляров от их общего количества, а при деятельном состоянии их число возрастает — например, в скелетных мышцах до 50-60 %. Проницаемость сосудистой стенки увеличивается под влиянием гистамина, серотонина, брадикинина, по-видимому, вследствие трансформации малых пор в большие. Проницаемость капилляров увеличивается под влиянием гиалурони-дазы, снижается — при действии ионов кальция, витаминов Р, С, катехолами-нов. Обменная поверхность капилляров состоит из чередующихся белковой, липидной и водной фаз. Липидная фаза представлена почти всей поверхностью эндотелиальной клетки, белковая — переносчиками и ионными каналами, водой заполнены межэндотелиальные поры и каналы, эндотелиоциты имеют фенестры. Свободно диффундирующие вещества быстро переходят в ткани, и диффузионное равновесие между кровью и тканевой жидкостью достигается уже в начальной половине капилляра. Для ограниченно диффундирующих веществ диффузионное равновесие достигается в венозном конце капилляра, либо оно не устанавливается вообще при большой линейной скорости кровотока. Фильтрация — главный фактор, обеспечивающий переход жидкости из капилляров в интерстиций (рис. 11.19). Обеспечивает фильтрацию жидкости в артериальном конце капилляра фильтрационное давление (ФД). При этом фильтрации способствуют гидростатическое давление крови (ГДК = 30 мм рт. ст) и онкотическое давление жидкости в тканях (ОДТ = 5 мм рт. ст. Препятствует фильтрации онкотическое давление плазмы крови (ОДК = 25 мм рт. ст. Гидростатическое давление в интерстиций колеблется около нуля, поэтому ФД = ГДК + ОДТ - ОДК = 30 + 5 - 25 = 10 (мм рт. ст. Реабсорбция межклеточной жидкости в капиллярах. По мере продвижения крови по капилляру ГДК снижается до 15 мм рт. ст, в результате силы, способствующие фильтрации, становятся меньше сил, противодействующих фильтрации, — формируется реабсорбционное давление (РД), обеспечивающее переход жидкости из интер- стиция в венозные концы капилляра РД = ОДК - ГДК - ОДТ = 25 — 15 — — 5 = 5 (мм рт. ст. ФД — фильтрационное давление РД — реабсорб-ционное давление Количество фильтрата (20 л/сут) несколько превышает количество реабсор-бируемой жидкости (около 18 л/сут), однако эта часть воды (2 л) из тканей удаляется через лимфатическую систему. Между объемом жидкости, фильтрующейся в артериальном конце капилляра, и объемом жидкости, реабсорбируемой в венозном конце и удаляемой лимфатическими сосудами, в норме существует динамическое равновесие. В случае накопления воды в интерстиций возникает отек тканей. В транспорте воды и частиц из капилляра в интерстиций участвуют диффузия и пиноцитоз. Лимфа, ее состав, значение, образование, передвижение. Роль лимфатической системы в кровообращении ЛИМФООБРАЩЕНИЕ Движение лимфы Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве остается 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150—180 мл лимфы, аза сутки через грудной лимфатический проток проходит дол лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым. Движение лимфы начинается с момента ее образования в лимфатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Факторами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей поверхности функционирующих капилляров (при повышении функциональной активности органов, увеличение проницаемости капилляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первоначального гидростатического давления, необходимого для перемещения лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды. В лимфатических сосудах основной силой, обеспечивающей перемещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфангионов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы развитую мышечную манжетку и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфангионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной манжетки. Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит перемещение лимфы в следующий центрипетальный лимфангион. Заполнение лимфой проксимального лимфангиона приводит к растяжению его стенок, возбуждению и сокращению гладких мышц и перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемещению порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан- гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как ив сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические сокращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому поступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонами биологически активным веществам. В частности, гистамин, увеличивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и амплитуду сокращений гладких мышц лимфангионов. Миоциты лимфангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры. В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Вовремя вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы — периодическое сдавление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов сердце, кишечник, скелетная мускулатура) влияет не только на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфатические сосуды, повышают внутрилимфатическое давление и выдавливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях — увеличивается. Ритмическое растяжение и массаж скелетных мышц способствуют не только механическому перемещению лимфы, но и усиливают собственную сократительную активность лимфангионов в этих мышцах |