Главная страница
Навигация по странице:

  • 1. Недостатки системы тягового электроснабжения переменного тока 25 кВ

  • При использовании системы 27,5 кВ требуется

  • При электрификации участка по системе 2 х 25 кВ необходимо

  • 3.Технология модернизации систем электроснабжения напряжением 27,5 кВ, 50 Гц

  • 4.Семиобмоточный симметрирующий трансформатор

  • Рис. 3. Схема соединений катушек симметрирующего трансформатора 5. Пятиобмоточный симметрирующий трансформатор

  • Рис. 5. Изображение пятиобмоточного СТТП на расчетной схеме и его векторная диаграмма Однофазный трансформатор системы 27.5+66.4 кВ.

  • 6.Модель токораспределения в трансформаторах системы тягового электроснабжения 93.9 кВ

  • ЭЖД,. 2. Системы электроснабжения электрических железных дорог, предприятий железнодорожного транспорта и режимы их работы


    Скачать 4.43 Mb.
    Название2. Системы электроснабжения электрических железных дорог, предприятий железнодорожного транспорта и режимы их работы
    АнкорЭЖД,.doc
    Дата16.05.2018
    Размер4.43 Mb.
    Формат файлаdoc
    Имя файлаЭЖД,.doc
    ТипДокументы
    #19310
    страница6 из 8
    1   2   3   4   5   6   7   8

    4.Система тягового электроснабжения повышенного напряжения с симметрирующими тяговыми трансформаторами


    1. Недостатки системы тягового электроснабжения переменного тока 25 кВ

    В нашей стране с 1950-х годов по системе переменного тока 27,5 кВ, 50 Гц электрифицировано около 24 тысяч километров дорог. Подтверждены неоспоримые преимущества перед системой электрификации на постоянном токе 3 кВ. Однако опыт эксплуатации выявил и ряд недостатков, к числу которых относятся следующие:

    • Несимметричность присоединения тяговых нагрузок к симметричным сетям внешнего электроснабжения через трансформаторы тяговых подстанций (ТП). Это вызывает появление токов и напряжений обратной последовательности, ухудшающих качество электрической энергии и повышающих ее потери в питающей сети и трансформаторах ТП на 25–100% в зависимости от соотношения токов плеч;

    • Неполно используются мощности трансформаторов ТП (всего на 68% от их номинальных значений);

    • Вынужденно применяются схемы неодинакового присоединения подстанций к фазам сетей внешнего (питающего) напряжения – так называемой схемы «винта», направленной на симметрирование нагрузок тяги в этих сетях. Эта схема малоэффективна и вынуждает сооружать на каждой ТП нейтральные вставки;

    • Плохо используются мощности тяговых подстанций, так как в питании любой нагрузки на стороне тяги участвуют только две ТП, что ведет к завышению установленной мощности подстанций и плохому ее использованию (в большинстве случаев не выше 15–20%);

    • Неодинаковы углы сдвига между векторами токов и напряжений фаз трансформаторов. Так, на «отстающей фазе» такой угол достигает 56 градусов, что вызывает повышенные потери напряжения на этих фазах, в тяговой сети и снижение скорости движения поездов, практически линейно зависящей от уровня напряжения на токоприемниках;

    • Питание всех ТП от сетей 220 или 110 кВ вызывает необходимость выдерживания между смежными подстанциями расстояния в 45–55 километров и по условиям защиты вынуждает сооружать в контактной сети посередине каждой межподстанционной зоны посты секционирования;

    • Необходимо усиливать контактную сеть на грузонапряженных участках с помощью усиливающих и экранирующих проводов, снижающих потери напряжения в тяговой сети;

    • Выход каждой тяговой подстанции в сети напряжением 220 или 110 кВ заставляет сооружать протяженные сети на этих напряжениях за счет железных дорог, а на самих тяговых подстанциях устанавливать по 2-3 дорогих высоковольтных трансформатора мощностью 25–40 МВА каждый (с большими потерями мощности в стали и меди);

    • На каждой тяговой подстанции необходимо организовывать коммерческий учет энергии;

    • Наличие уравнительных токов в тяговых сетях межподстанционной зоны (вызываемых неравенством напряжений на вводах тяговой подстанции, питающих межподстанционные зоны) ведет к дополнительным потерям энергии, учитываемым счетчиками энергии на тяговой подстанции дополнительно к энергии, расходуемой на тягу поездов, завышая данные расхода энергии;

    • Каждая тяговая подстанция является высоковольтной, сложной по коммутации. Она требует значительного количества обслуживающего персонала, что ведет к существенным эксплуатационным расходам.

    2. Система электрификации с головными тяговыми подстанциями с симметрирующими трансформаторами, двухпроводными продольными линиями 66,5+27,5=94 кВ (ДПЛ-94) и промежуточными ТП с однофазными трансформаторами

    Отмеченные выше недостатки системы 27,5 кВ, 50 Гц позволили сформулировать требования к новой системе электрификации:

    • Количество выходов тяги на сети общего назначения необходимо существенно сократить с таким расчетом, чтобы интервалы между тяговыми подстанциями, имеющими выход на сети общего назначения, не превышали 200–350 км;

    • На таких головных подстанциях (ГТП), имеющих выход на сети общего назначения, следует устанавливать симметрирующие трансформаторы с двумя выходами на плечи питания: непосредственно в тяговую сеть смежных межподстанционных зон на напряжении 27,5 кВ и на двухпроводные питающие линии 66,5+27,5=94 кВ (ДПЛ-94) на напряжении 94 кВ, обеспечивающие питание промежуточных тяговых подстанций (ПТП) с простыми однофазными трансформаторами 94/27,5 кВ;

    • Большие расстояния между смежными ГТП сводят уравнительные токи между ними практически к нулю, выравнивают нагрузки плеч питания ГТП, что обеспечивает максимальный симметрирующий эффект для системы тяги;

    • Питание промежуточных подстанций от общих ДПЛ-94 при расстояниях между промежуточными тяговыми подстанциями 25–30 км создает такой режим питания тяговых нагрузок, когда в их покрытии участвуют все промежуточные тяговые подстанции, подключенные к ДПЛ-94 данного плеча. В результате снижается установленная мощность ГТП за счет лучшего их использования.

    По предложению МИИТ эта система была разработана применительно к участку Карымская – Забайкальск Забайкальской ж.д. протяженностью 354,3 км. Питание тяговых нагрузок данного участка по этой системе можно осуществить всего от двух ГТП (при расстоянии между ними 195,2 км) с тремя СТ по 60 МВА каждая и одиннадцати ПТП, из которых четыре оснащаются двумя однофазными трансформаторами по 16 МВА каждая, а остальные семь – одним трансформатором 16 МВА каждая. Общая установленная мощность трансформаторов для всего участка составляет 600 МВА. Весь участок оснащается четырьмя нейтральными вставками на ГТП, а потребность в постах секционирования вообще отсутствует. Обслуживающий персонал в полном объеме необходим только на двух ГТП, а на одиннадцати ПТП его можно свести к минимуму. Затраты на сооружение сетей внешнего электроснабжения двух ГТП составляют 532 млн. руб.; на сооружение устройств электроснабжения тяги – 14 335 млн. руб. Коммерческий учет энергии организуется только на двух ГТП.

    Все ПТП оснащаются воздушными промежутками, работают по тяговой сети параллельно, что приводит к полному использованию их установленных мощностей. Значительные по протяженности консоли и участок между ГТП выравнивают нагрузки слева и справа от каждой ГТП, что позволяет исключить несимметрию токов и напряжений на вводах ГТП и в сетях общего назначения. Суммарные потери мощности в стали трансформаторов для этой системы составляют 450 кВт.

    Для этого же участка были проведены расчеты параметров электроснабжения тяги по системам 27,5 кВ и 2–25 кВ.

    При использовании системы 27,5 кВ требуется:

    • соорудить девять ТП с высшим напряжением 110 кВ при общей установленной мощности трансформаторов 730 МВА, что на 21,7% больше, чем при системе с ДПЛ-94. Следует учесть, что суммарная мощность трехфазных трансформаторов ГТП с высшим напряжением 110 кВ при системе с ДПЛ-94 составляет 360 МВА (49,3% от мощности трансформаторов с высшим напряжением 110 кВ при системе 27,5 кВ), а суммарная мощность остальных и более дешевых однофазных трансформаторов с первичным напряжением 66,5+27,5=94 кВ составляет 240 МВА.

    • При системе 27,5 кВ на участке требуется соорудить 18 нейтральных вставок и 8 постов секционирования. Для всех 9 ТП необходим обслуживающий персонал в полном объеме. Затраты на сооружение сетей внешнего электроснабжения, обслуживающих девять ТП по этой системе, составляют 938 млн. руб.

    • Общие затраты на сооружения по системе 27,5 кВ составляют 14867 млн. руб., что на 532 млн. руб. больше чем по системе с ДПЛ-94. Суммарные потери мощности в стали трансформаторов составляют 612 кВт – на 162 кВт (36%) больше, чем при системе с ДПЛ-94.

    При электрификации участка по системе 2 х 25 кВ необходимо:

    • сооружение шести ТП с высшим напряжением 110 кВ при общей установленной мощности трансформаторов на ТП и автотрансформаторов в тяговой сети 1152 МВА, что на 113,3% больше, чем в системе с ДПЛ-94:

    • надо организовать 6 выходов ТП на сети 110 кВ питающих энергосистем. Обслуживание всех ТП должно осуществляться полным комплектом персонала и требует коммерческого учета энергии на всех ТП;

    • Затраты на сооружение сетей внешнего электроснабжения составляют около 850 млн. руб. Потери мощности в стали трансформаторов и автотрансформаторов – 1082 кВт (на 632 кВт больше, чем при системе с ДПЛ-94);

    • Годовые потери энергии в трансформаторах при системах 2–25 кВ и ДПЛ-94 равны, соответственно, 29 914 и 11 456 тыс. кВтч, а их разность составляет более 3% годового расхода энергии на тягу поездов всего участка.

    Вывод:

    • система с ДПЛ-94 имеет серьезные преимущества перед существующими системами 1х25кВ и 2х25 кВ. Кроме того, возможность регулирования расстояний между ГТП в этой системе позволяет определять эти расстояния, исходя из конкретного расположения существующих сетей внешнего электроснабжения 110 и 220 кВ, профиля пути, массы поездов и размеров движения. Это особенно существенно при выборе системы электрификации дорог в малообжитых районах со слабыми системами электроснабжения.

    3.Технология модернизации систем электроснабжения напряжением 27,5 кВ, 50 Гц

    Анализ недостатков существующей системы электроснабжения позволил найти средства, которые позволяют избавиться от этих недостатков на существующих участках.

    Эта работа была предложена МИИТ и выполняется им как головным исполнителем совместно с ВНИИЖТ и Росэнерготранс для обеспечения максимальных симметрирующих свойств не всех ТП «винта», а на каждой ТП на существующих дорогах переменного тока 27,5 кВ, 50 Гц. Было предложено обеспечить формирование напряжений плеч питания на подстанциях, сдвинутых относительно друг друга на 90 градусов. Такой сдвиг можно обеспечить с помощью трансформаторных приставок (ТПР). Их схемы могут быть различными.

    Исследования показали, что экономически наиболее целесообразными являются ТПР, которые первичными обмотками, соединенными по схеме открытого треугольника, подключаются к тяговой обмотке трансформатора ТП, а вторичными, соединенными по схеме неполной звезды, включаются в рассечки выводов трансформатора ТП к шинам 27,5 кВ ТП.

    При равной нагрузке плеч питания ТП как автономный потребитель распределяет двухплечевую нагрузку симметрично по всем фазам. При оснащении всех ТП такими ТПР нет никакой нужды сами ТП подключать к сетям внешнего электроснабжения с чередованием фаз. При этом используемая мощность трансформаторов ТП увеличивается на 32%, угол между напряжением и током отстающей фазы снижается с 56–57 до 36–37 градусов, что при токах плеч около 1000 А увеличивает напряжение на плече отстающей фазы на 2700–3000 В. Потери мощности в меди трансформатора снижаются на 25– 100%. Включение ТПР в рассечку плеч питания обеспечивает снижение уравнительных токов.

    Мощность одной ТПР составляет 6 МВА. Возвращаемая мощность основного трансформатора при его номинальной мощности 40 МВА – около 10,0 МВА. С учетом того, что основной трансформатор своей первичной обмоткой присоединяется к сетям энергоснабжающей организации напряжением 110 или 220 кВ, стоимость дополнительной мощности, реализуемой им, оказывается больше, чем стоимость двух ТПР при первичном их напряжении 27,5 кВ. Все остальные положительные свойства, приобретаемые при подключении ТПР, включая и симметрирующий эффект, являются дополнительными технико-экономическими показателями, увеличивающими эффект применения ТПР.

    Результаты научно-исследовательских, конструкторских и проектных работ, выполненных ведущими институтами и заводами отрасли, приводят к таким главным выводам.

    1.Существующая система электроснабжения железных дорог обладает недостатками, устранение которых позволяет найти для вновь электрифицируемых и существующих участков технологические решения, обеспечивающие весомое повышение надежности работы, снижение капитальных затрат и эксплуатационных расходов.

    2.Электрификацию новых участков целесообразно осуществлять по системе с ДПЛ-94 и симметрирующими трансформаторами, обеспечивающей минимум потерь энергии и напряжений, расходов на сооружение линий, на коммерческий учет энергии, снижение уравнительных токов, лучшее использование мощности трансформаторов и т.д.

    3. Технология электрификации существующих участков на переменном токе 27,5 кВ, 50 Гц нуждается в модернизации по тем же показателям, что и вновь электрифицируемых. На ТП, подлежащих модернизации, в каждое плечо необходимо включить трансформаторные приставки мощностью по 6 МВА, которые обеспечивают увеличение съема мощности на 32%, повышение напряжения на плечах питания при максимальных нагрузках на 2700–3000 В, исключение не симметрии токов на вводах ТП, снижение потерь энергии в трансформаторах и уравнительных токов.

    4.Семиобмоточный симметрирующий трансформатор

    Для вновь электрифицируемых участков железных дорог предлагаются системы тягового электроснабжения (СТЭ) повышенного напряжения, включающие в свой состав опорные тяговые подстанции (ТП) с симметрирующим трансформаторами по схеме Скотта и промежуточные ТП напряжением 85..110 кВ [1]. Схема одного из вариантов такой СТЭ показана на рис. 1.



    Рис.1. СТЭ повышенного напряжения с симметрирующими трансформаторами
    Опорная (питающая) тяговая подстанция в этой системе – единственное звено, связывающее сеть общего назначения 220 (110) кВ с сетью тягового электроснабжения. Питающая подстанция оборудована симметрирующими трансформаторами мощностью 63..80 МВА. Тяговая сеть состоит из двухпроводных линий левого и правого плеч (напряжение между проводами 93,9 – 94 кВ), промежуточных подстанций (ОТП) с однофазными трансформаторами мощностью 16 – 25 МВА (в зависимости от объемов перевозок и расстояний между питающими тяговыми подстанциями). Двухпроводные линии предполагается прокладывать по опорам контактной сети. При необходимости тяговая сеть на стороне 27,5 кВ может быть усилена экранирующим и усиливающим проводами.



    Рис. 2. Векторная диаграмма напряжений симметрирующего трансформатора
    От опорной подстанции получают питание контактная сеть на 27,5 кВ и продольные линии электроснабжения на 94 кВ. В варианте рис. 1 в схеме симметрирующего трансформатора тяговой подстанции (СТТП) на стороне тяги сочленены две подобные друг другу симметрирующие структуры соединений обмоток (рис.2). Первая с выводами 1, 3, 5 представляет собой схему СТТП, предложенную МИИТ для замены трансформаторов на существующих тяговых подстанциях. Здесь напряжения между выводами 1 – 5 и 3 – 5 равны 27,5 кВ и сдвинуты по фазе на 90°.

    Вторая структура (выводы 2, 4, 5) подобна первой, имеет с ней общий вывод 5, соединяемый с рельсами (землей). Напряжения между выводами 2 – 5 и 4 – 5 предусматривают равными кВ, чтобы обеспечить уровень изоляции одного из проводов двухпроводных линий по отношению к земле (вывод 5) в пределах 115 кВ. Напряжение между проводами двухпроводной линии, получающей питание от выводов 1 и 2, составляет 93,9 кВ, между выводом 1 и землей — 27,5 кВ, между выводом 2 и землей — 66,4 кВ. Напряжение между выводами 3 и 4 равно 93,9 кВ, между выводом 3 и землей — 27,5 кВ, между выводом 4 и землей — 66,4 кВ. Напряжения между выводами 1 – 2 и 3 – 4 сдвинуты по фазе на 90°, что обеспечивает симметрирующий эффект трансформатора. Симметрирующий эффект этого СТТП соответствует кривой 3 на рис. 1.?

    Схема соединений катушек трансформатора, соответствующая рис. 2, изображена на рис. 3 (стрелками показаны направления векторов напряжений). Катушки 27.5 кВ соединены в треугольник и две неполных звезды. Номинальные напряжения катушек указаны на рис. 3. Подсистема 66.4 кВ включает катушки на 34.37 кВ и 19.84 кВ. В текущей версии программного комплекса максимальное число обмоток трансформатора равно пяти, поэтому симметрирующие трансформаторы моделируются двумя четырехобмоточными трансформаторами мощностью по 40 МВА каждый.

    Рис. 3. Схема соединений катушек симметрирующего трансформатора
    5. Пятиобмоточный симметрирующий трансформатор

    В той же работе [1] приведена система векторов напряжений второго варианта симметрирующего трансформатора. Схема соединения обмоток СТТП также состоит из двух совмещаемых структур. Структура с выводами 1, 3, 5 (рис. 4) предназначена для питания контактной сети 27,5 кВ и одного провода двухпроводной линии напряжением 27,5 кВ. Вторая структура с выводами 2, 4, 5 обеспечивает питание другого провода двухпроводной линии; напряжения между выводами 2 – 5 и 4 – 5 составляют 66,4 кВ.



    Рис. 4. Диаграммы напряжений пятиобмоточного СТТП

    Рис. 5. Изображение пятиобмоточного СТТП на расчетной схеме и его векторная диаграмма
    Однофазный трансформатор системы 27.5+66.4 кВ.

    Первичная обмотка однофазного трансформатора (рис. 7) имеет три вывода. Между крайними выводами а1 – а2 напряжение составляет 93,9 кВ, между выводами а1 – 0 — 66,4 кВ, между выводами а2 – 0 — 27,5 кВ. Вывод 0 присоединяется к заземленным рельсам, выводы а1 и а2 — к проводам питающей двухпроводной линии 93,9 кВ. Вывод 0 этой обмотки фиксирует напряжения выводов а1 и а2 относительно рельсов (земли). Вторичная обмотка выполняется на напряжение 27,5 кВ; вывод а присоединяется к распределительному устройству 27,5 кВ подстанции, вывод х — к рельсам.


    Рис. 7. Схема обмоток однофазного трансформатора промежуточной ТП
    1.Василянский А. М., Мамошин Р. Р., Якимов Г. Б. Совершенствование системы тягового электроснабжения железных дорог, электрифицированных на переменном токе 27,5 кВ, 50 Гц // Железные дороги мира. – 2002. – № 8. – С. 40-46.

    6.Модель токораспределения в трансформаторах системы тягового электроснабжения 93.9 кВ

    Система электрической тяги переменного тока 25 кВ, обладая большей нагрузочной способностью по сравнению с системой электрической тяги 3 кВ, тем не менее, не лишена ряда недостатков. Кроме того, на ряде участков железных дорог сложность профиля пути и ввод в эксплуатационную практику тяжелых (6000-12000) тонн поездов, приводят к ситуации, когда нагрузочная способность и этой системы оказывается недостаточной. Одним из возможных решений задачи по повышению нагрузочной способности системы электрической тяги и ее энергетических характеристик является автотрансформаторные системы, впервые появившиеся в США в 1913 г. [4].

    С момента возникновения автотрансформаторные системы эволюционировали по пути повышения уровня напряжения, используемого для передачи энергии удаленным от подстанции электроподвижным нагрузкам, а также по пути уменьшения несимметрии напряжений. В настоящее время в научной печати широко обсуждается вопрос о реализации автотрансформаторной системы 27.5/66.4 кВ. Практическому внедрению, таким образом, предшествует аналитический анализ всех качеств системы и прогнозирование ее поведения в различных режимах работы. Ниже рассматривается вопрос, касающийся работы специальных симметрирующих трансформаторов этой системы. Предлагается математическая модель распределения токов электроподвижного состава по отдельным обмоткам специального трансформатора тяговой подстанции системы 27.5/66.4 кВ

    Система тягового электроснабжения 27.5/66.4 кВ повышает нагрузочную способность и в значительной мере экономит электроэнергию в системе электрических железных дорог [1, 2]. Применение такой системы ставит некоторые вопросы по расчету режимов ее работы. В частности при формировании такой системы на пятиобмоточных трансформаторах встает вопрос оценки токов в фазах первичной обмотки. Это необходимо для оценки несимметрии токов и напряжений, оценки потерь энергии, а также для правильного выбора трансформаторной мощности для тяги поездов.

    Систему 93.9 кВ можно было бы сформировать, применяя классическую схему двухфазно – трехфазного трансформатора Скотта, однако, в этом случае, возникают проблемы организации питания линий два провода – рельс (ДПР). В связи с этим в [1] предлагаются схемы системы электрической тяги переменного тока 27.5+66.4 кВ.

    На рис. 1. представлена возможная схема системы тягового электроснабжения 27.5+66.4 кВ. Трансформатор тяговой подстанции имеет одну первичную обмотку, соединенную звездой и четыре вторичных обмотки, две из которых соединены треугольником, а две другие в неполную звезду. Причем один из треугольников имеет напряжение 27.5 кВ, другой – 66.4 кВ. Аналогично линейные напряжения неполных звезд имеют напряжения 27.5 кВ и 66.4 кВ. Если принять для одного из плеч питания напряжение 27.5 кВ фазы «а» треугольника, то для другого плеча с целью симметрирующего эффекта необходимо подобрать линейное напряжение звезды 27.5 кВ, таким образом, чтобы векторы напряжения 27.5 кВ были сдвинуты относительно друг друга на 900. Если вектор напряжения «а» треугольника принять вертикальным, то для получения перпендикулярного вектора напряжения необходимо принять неполную звезду с линейным напряжением 27.5 кВ фаз «в» и «с». Аналогично можно поступить и для векторов напряжения 66.4 кВ второго треугольника и линейного напряжения 66.4 кВ второй звезды.
    1   2   3   4   5   6   7   8


    написать администратору сайта