Методы повышения нефтеотдачи пластов. 2. Техникотехнологическая часть Геология месторождения
Скачать 267 Kb.
|
1 2 Технология метода заключается в том, что закачка воды прекращается в одни скважины и переносится на другие, в результате чего обеспечивается изменение направления фильтрационных потоков до 90°. Физическая сущность процесса состоит в следующем. Во-первых, при обычном заводнении вследствие вязкостной неустойчивости процесса вытеснения образуются целики нефти, обойденные водой. Во-вторых, при вытеснении нефти водой водонасыщенность вдоль направления вытеснения уменьшается. При переносе фронта нагнетания в пласте создаются изменяющиеся по величине и направлению градиенты гидродинамического давления, нагнетаемая вода внедряется в застойные малопроницаемые зоны, большая ось которых теперь пересекается с линиями тока, и вытесняет из них нефть в зоны интенсивного движения воды. Объем закачки вдоль фронта целесообразно распределить пропорционально оставшейся нефтенасыщенности (соответственно уменьшающейся водонасыщенности). Изменение направления фильтрационных потоков достигается за счет дополнительного разрезания залежи на блоки, очагового заводнения, перераспределения отборов и закачки между скважинами, циклического заводнения. Метод технологичен, требует лишь небольшого резерва и мощности насосных станций и наличия активной системы заводнения (поперечные разрезающие ряды, комбинация приконтурного и внутриконтурного заводнений и др.). Он позволяет поддерживать достигнутый уровень добычи нефти, снижать текущую обводненность и увеличивать охват пластов заводнением. Метод более эффективен в случае повышенной неоднородности пластов, высоковязких нефтей и применения в первой трети основного периода разработки. Форсированный отбор жидкости Впервые началось применение метода в 1938 г. на промыслах Азербайджана. Технология заключается в поэтапном увеличении дебитов добывающих скважин (уменьшении забойного давления р3). Физико-гидродинамическая сущность метода состоит в создании высоких градиентов давления путем уменьшения р3.При этом в неоднородных сильно обводненных пластах вовлекаются в разработку остаточные целики нефти, линзы, тупиковые и застойные зоны, малопроницаемые пропластки и др. Условиями эффективного применения метода считают: а) обводненность продукции не менее 80 - 85 % (начало завершающей стадии разработки); б) высокие коэффициенты продуктивности скважин и забойные давления; в) возможность увеличения дебитов (коллектор устойчив, нет опасений прорыва чуждых вод, обсадная колонна технически исправна, имеются условия для применения высокопроизводительного оборудования, пропускная способность системы сбора и подготовки продукции достаточна). 2.5. Физико-химические методы повышения нефтеотдачи пластов 2.5.1. Заводнение поверхностно-активными веществами К ним относятся методы, использующие в качестве рабочих агентов поверхностно-активные вещества (ПАВ), полимеры, щелочи и серную кислоту. Неионогенные ПАВ типа ОП-10 при оптимальном массовом содержании 0,05—0,1 % обеспечивают снижение поверхностного натяжения от 35—45 до 7—8 мН/м, увеличение угла смачивания от 18 до 27° и уменьшение натяжения смачивания в 8—10 раз. Однако такие растворы способны обеспечить повышение нефтеотдачи не более чем на 2—5 %. Метод закачки водных растворов ПАВиспытывался с 60-х годов на 35 участках более 10 месторождений страны. Однако вследствие большой адсорбции ПАВ из раствора поверхностью породы технологическая и экономическая эффективность становится весьма сомнительной. Объемы закачиваемых растворов ПАВ должны быть очень большими (не менее 2—3 объемов пор). Фронт ПАВ движется по пласту в 10—20 раз медленнее, чем фронт вытеснения. Технология закачки раствора ПАВ весьма простая, не влечет за собой существенных изменений в технологии и в системе размещения скважин. Для дозированной подачи растворов ПАВ разработана установка УДПВ-5. Будущее метода связывают в основном с обработкой призабойных зон нагнетательных скважин для повышения их приемистости, с нагнетанием слабоконцентрированных (0,05—0,5 %) и высококонцентрированных (1— 5%) растворов для освоения плотных глинистых коллекторов и снижения давления нагнетания, а также с созданием композиций ПАВ, обеспечивающих уменьшение межфазного натяжения до 0,01— 0,05 мН/м. 2.5.2. Полимерное заводнение Метод полимерного заводненияоснован на способности раствора полимера в воде уменьшать соотношение подвижностей (загущение воды) нефти и воды (текущий фактор сопротивления) и уменьшать подвижность воды, закачиваемой за раствором полимера (остаточный фактор сопротивления), что повышает охват пластов заводнением. Испытан гидролизованный полиакриламид (ПАА). Рекомендуется оторочка размером 0,1—0,5 от объема пор с концентрацией 0,01—0,1 %. Гель ПАА не технологичен в применении (требует больших затрат ручного труда, больших транспортных расходов, замерзает при минусовой температуре). Для приготовления раствора из порошка разработаны установки УДПП-1,5, УДПП-5, УДПП-200. Метод относится к дорогим, поэтому перспективы его применения зависят от цены на нефть, объемов производства дешевых полимеров и эффективного сочетания с другими методами повышения нефтеотдачи. 2.5.3. Щелочное заводнение Метод щелочного заводнения основан на взаимодействии щелочей с активными компонентами (органическими кислотами) нефти и породой. При этом образуются ПАВ, изменяется смачиваемость породы, набухают глины, образуются устойчивые эмульсии и выделяются осадки. Для приготовления щелочных растворов могут использоваться с различными показателями щелочности едкий натр (каустическая сода) NaOH, углекислый натрий (кальцинированная сода) Na2CO3, гидроксид аммония (аммиак) NH4OH, силикат натрия (растворимое стекло) Na2SiC > 3. Наиболее активные из них первый и последний (силикатно-щелочное заводнение). Щелочные растворы закачивают в виде оторочек размером 0,1—0,25 объема пор с концентрацией 0,05—0,5%. При значительной адсорбции щелочи возможна ступенчатая оторочка раствора с убывающей концентрацией. При взаимодействии силиката натрия и хлористого кальция СаС12 образуется устойчивая эмульсия и выделяется осадок силиката кальция CaSiO3, снижающие проницаемость промытой части пласта. Приготовление раствора щелочи и его подача в пласт не отличаются большой сложностью. Механизм повышения нефтеотдачи при вытеснении нефти серной кислотой (сернокислотное заводнение) заключается в образовании кислого гудрона (вязкой смолистой массы) в наиболее промытой водой зоне (наиболее значимый фактор) и поверхностно-активных водорастворимых сульфокислот. В результате снижается водопроницаемость промытых зон, повышается охват пласта заводнением и снижается межфазное натяжение (до 3—4 мН/м). Применяют либо техническую серную кислоту концентрацией до 96%, либо так называемую алкилированную серную кислоту (АСК) концентрацией 80—85 % (сернокислотный отход производства высокооктанового бензина). Технология метода заключается в закачке в пласт небольшой (порядка 0,15 % порового объема пласта) оторочки серной кислоты, продвигаемой по пласту водой. Для этого у нагнетательной скважины размещают емкости (500—2000 м3) с АСК, которую насосами закачивают в пласт. После этого скважина подключается к общей системе заводнения для закачки воды. Применение метода сопровождается сильной коррозией используемого оборудования и эксплуатационной колонны скважины. 2.5.4.Вытеснение нефти двуокисью углерода Исследования применения диоксида углерода начаты в начале 50-х годов. С 60-х годов метод испытан на нескольких месторождениях. Углекислый газ при температуре выше 31 °С находится в газообразном состоянии при любом давлении. Если температура ниже 31 °С, образуется жидкая фаза, однако при давлении меньше 7,2 МПа углекислый газ испаряется. Метод основан на хорошей его растворимости в пластовых флюидах, что обеспечивает объемное расширение нефти в 1,5—1,7 раз, смесимость его с нефтью (устранение капиллярных сил), снижение вязкости нефти (от десятков процентов до нескольких раз) и, как результат, повышение коэффициента вытеснения (до 0,95). Однако применение СО2 как любого маловязкого агента сопровождается значительным снижением коэффициента охвата (на 5—15%), из-за чего увеличение коэффициента нефтеотдачи может составлять лишь 7—12 %. Источниками получения СО2 могут быть залежи углекислого газа, тепловые электростанции, заводы по получению искусственного газа из угля, сланцев и другие химические заводы. При сжигании природного газа получается в 6—11 раз больший объем продуктов сгорания. Диоксид углерода закачивают во внутриконтурные нагнетательные скважины в газообразном (лучше при давлении полной смесимости около 10—30 МПа) или жидком состоянии в виде оторочки, проталкиваемой водой, вместе с водой для создания чередующихся оторочек при отношении порций СО2 и воды приблизительно 0,25—1, а также в растворенном состоянии в виде карбонизированной воды концентрацией 3—5%. Использование карбонизированной воды малоэффективно (коэффициент вытеснения повышается всего на 10—15%). Оптимальный объем оторочки СО2 составляет 0,2—0,3 объема пор. Кроме сочетания закачки СО2 с заводнением для уменьшения преждевременных прорывов СО2 предлагается нагнетать его попеременно с раствором полимера, силиката натрия, ПАВ, углеводородным газом и др. Техника закачки зависит от применяемой технологии. Для внедрения метода необходимо решить проблемы транспорта жидкого СО2, распределения его по скважинам, утилизации СО2 и повторного использования, борьбы с коррозией труб и нефтепромыслового оборудования. Из всех известных методов закачка СО2 наиболее универсальна и перспективна. Применение этого метода определяется ресурсами природного СО2, так как потребности в нем (1000— 2000 м3 на 1 т добычи нефти) трудно удовлетворить за счет отходов химического производства, хотя этот источник СО2 экономически рентабелен. 2.5.5. Мицеллярно-полимерное заводнение Мицеллярный раствор — это тонкодисперсная коллоидная система из углеводородной жидкости (от сжиженного нефтяного газа до сырой легкой нефти), воды и водонефтерастворимого ПАВ, стабилизированная спиртом (изопропиловым, бутиловым). Мицеллярное заводнение обеспечивает снижение межфазного натяжения в пласте при оптимальном составе практически до нуля (не более 0,001 мН/м). По лабораторным данным, коэффициент нефтевытеснения при мицеллярном заводнении составляет 80—98 %. Технология процесса состоит в закачке во внутриконтурные скважины последовательно оторочек растворов химических реагентов: а) предоторочки (20 % от объема пор) из пресной воды или слабоминерализованного раствора хлористого натрия для понижения концентрации ионов кальция и магния (при необходимости); б) оторочки мицеллярного раствора малоконцентрированного (20—50 % от объема пор) или высококонцентрированного (5—15% от объема пор); в) буферной оторочки или буфера подвижности (до 30—60 % от объема пор) из полимерного раствора с постепенно уменьшающейся вязкостью от вязкости мицеллярного раствора до вязкости воды (мщеллярно-полимерное заводнение).Вслед за буферной оторочкой до конца разработки закачивается обычная вода, применяемая для заводнения. Для сохранения целостности оторочки мицеллярного раствора в предоторочку и в буферную оторочку добавляют спирт концентрации, равной его концентрации в мицеллярном растворе. Мицеллярные растворы могут быть высококонцентрированными, содержащими до 50—70 % углеводородов, до 8—10 % сульфонатов, до 2—3 % стабилизатора, и малоконцентрированными водными, содержащими углеводородов менее 5%, сульфонатов до 2% и стабилизатора менее 0,1%. Мицеллярный раствор готовится из составных компонентов непосредственно на месторождении. Обычно он хорошо перемешивается при циркуляции его через насос, перед закачкой его пропускают через фильтр. Оптимальная технология должна жестко выдерживаться, так как ее нарушение неизбежно ухудшает эффективность процесса. Потенциальные масштабы применения метода очень большие (все месторождения с терригенными коллекторами, нефтенасыщенностью более 30 % и вязкостью нефти менее 15— 20 мПа∙с). Внедрение метода ограничивается сравнительно высокой стоимостью мицеллярного раствора. 2.5.6. Тепловые методы исключения высоковязких нефтей, вытеснение нефти паром Сущность тепловых методов состоит в том, что наряду с гидродинамическим вытеснением повышается температура в залежи, что способствует существенному уменьшению вязкости нефти, увеличению ее подвижности, испарению легких фракций и др. Объектами их применения являются залежи высоковязкой смолистой нефти вплоть до битумов, залежи нефтей, обладающих неньютоновскими свойствами, а также залежи, пластовая температура которых равна или близка к температуре насыщения нефти парафином. Высокой вязкостью характеризуется относительно большая доля известных запасов нефти в мире, причем отмечается тенденция ее возрастания. Другие методы разработки и повышения нефтеотдачи либо не применимы, либо не обеспечивают достаточной эффективности. Различают следующие разновидности тепловых методов: теплофизические — закачка в пласт теплоносителей (горячей воды, пара, в том числе в качестве внутрипластового терморастворителя, и пароциклические обработки скважин); термохимические — внутри-пластовое горение. Пар как маловязкий рабочий агент обычно движется у кровли пласта. Охват паром по толщине не превышает 0,4, по площади составляет 0,5—0,9. Коэффициент нефтеотдачи при этом достигает 0,3—0,35. Закачка в пласт теплоносителя может осуществляться с нагревом его на поверхности или на забое скважины; на поверхности с дополнительным подогревом на забое скважины. Недостаток поверхностных теплогенераторов — большие потери теплоты (соответственно снижение температуры) в поверхностных коммуникациях и в стволе скважины. Нормированная потеря теплоты в подводящих трубопроводах составляет (0,5—6) 103 % от теплопроизводительности парогенераторов на 1 м трубопровода. С увеличением глубины пар может превратиться в горячую воду. При движении теплоносителя по пласту также возможны потери теплоты через кровлю и подошву пласта. Для уменьшения всех теплопотерь выбирают нефтяные пласты с достаточно большой толщиной (более 6 м), применяют площадные сетки скважин с расстоянием до 100—200 м между нагнетательными и добывающими скважинами, перфорируют скважины в средней части пласта, обеспечивают максимально возможный темп нагнетания теплоносителя (пара 100—250 т/сут и более), теплоизолируют трубы, теплогенератор максимально приближают к скважинам и др. Теплопотери в стволе скважины ограничивают область применения методов закачки пара на глубины залегания пласта до 700—1500 м. Теплоноситель закачивают в виде нагретой оторочки размером более 0,3—0,4 объема обрабатываемого пласта, а затем форсированно продвигают ее по пласту холодной водой, которая нагревается теплотой, аккумулированной в пласте за фронтом вытеснения. При пароциклических обработках(стимуляции) добывающих скважин в скважину в течение 15—25 суток закачивают пар в объеме 30—100 т на 1 м толщины пласта. Затем закрывают скважину на 5—15 суток для перераспределения теплоты, противоточного капиллярного вытеснения нефти из малопроницаемых пропластков. После этого скважину эксплуатируют до предельного рентабельного дебита нефти в течение 2—3 месяцев. Полный цикл занимает 3—5 месяцев и более. Обычно всего бывает 5—8 циклов за 3—4 года с увеличивающейся продолжительностью каждого. Так как теплота доставляется на небольшую глубину в пласт, то плотность сетки скважин должна быть не более (1—2) 104 м2/скв. На 1 т закачанного пара в среднем за все циклы добывают 1,5—2 т нефти (при уменьшении от 10—15 до 0,5—1 т). Применяемое оборудование включает парогенераторную или водогрейную установку, поверхностные коммуникации (трубопроводы, компенсаторы температурных деформаций), устьевое и внутрискважинное оборудование. Для получения и нагнетания пара в пласт имеются блочные передвижные парогенераторные установки отечественные типа УПГГ-9/120 МУ-1, УПГ-60/160, УПГ-50/60, обеспечивающие теплопроизводительность 22,2—144 ГДж/ч, паропроизводительность 9—60 т/ч, рабочее давление на выходе 6—16 МПа, степень сухости пара 0,8 при общей массе 38—98 т. Условиями снижения потерь теплоты и температурными расширениями элементов скважины определяется подбор устьевого и внутрискважинного оборудования, которое включает арматуру устья типа АП (задвижки, устьевой сальник, устьевое шарнирное устройство и стволовой шарнир), колонну НКТ, термостойкий пакер с внутрискважинным компенсатором или устьевым сальником, колонную сальниковую головку. При закачке теплоносителя осложнения в эксплуатации скважин могут быть вызваны выносом песка, образованием эмульсий, преждевременными прорывами пара, нагревом обсадной колонны и добывающего оборудования. Для предупреждения этих явлений проводят крепление призабойной зоны, ограничение отборов вплоть до остановок скважин и др. 1 2 |