пгвьп. 3 Функциональная характеристика нейронов
Скачать 0.97 Mb.
|
Казахский национальный педагогический университет имени Абая Институт педагогий и психологий Кафедра специального образования 6В03111 Семинар № 3. Тема: 3) Функциональная характеристика нейронов Выполнил: Дауталы Айбол Алматы, 2022г Функциональная единица нервной системы — нервная клетка, нейрон. Нейроны способны генерировать электрические импульсы и передавать их в виде нервных импульсов. Нейроны образуют между собой химические связи — синапсы. Соединительная ткань нервной системы представлена нейроглией (дословно— «нервная глия»). Клетки нейроглии так же многочисленны, как и нейроны, и выполняют трофическую и опорную функции. Миллиарды нейронов формируют поверхностный слой — кору— полушарий головного мозга и полушарий мозжечка. Кроме того, в толще белого вещества нейроны образуют скопления—ядра. Практически все нейроны ЦНС мультиполярны: сома (тело) нейронов характеризуется наличием нескольких полюсов (вершин). От каждого полюса, за исключением одного, отходят отростки — дендриты, которые образуют многочисленные разветвления. Дендритные стволы могут быть гладкими или образовывать многочисленные шипики. Дендриты образуют синапсы с другими нейронами в области шипиков или ствола дендритного дерева. От оставшегося полюса сомы отходит отросток, проводящий нервные импульсы,— аксон. Большинство аксонов формирует коллатеральные ветви. Концевые ветви образуют синапсы с нейронами-мишенями. Нейроны образуют два основных типа синаптических контактов: аксодендритические и аксосоматические. Аксодендритические синапсы в большинстве случаев передают возбуждающие импульсы, а аксосоматические — тормозящие. Формы нейронов мозга. (1) Пирамидальные нейроны коры полушарий. (2) Нейроэндокринные нейроны гипоталамуса. (3) Шипиковые нейроны полосатого тела. (4) Корзинчатые нейроны мозжечка. Дендриты нейронов 1 и 3 образуют шипики. А — аксон; Д — дендрит; КА — коллатерали аксона. Дендритные шипики. Срез мозжечка, на котором имеются дендриты гигантских клеток Пуркинье, образующие шипики. В поле зрения различимы три шипика (Ш), образующие синаптические контакты с булавовидными расширениями аксонов (А). Четвертый аксон (слева вверху) образует синапс с дендритным стволом. (А) Двигательный нейрон переднего рога серого вещества спинного мозга. (Б) Увеличенное изображение (А). Миелиновые оболочки участков 1 и 2, располагающихся в белом веществе ЦНС, образованы олигодендроцитами. Возвратная коллатеральная ветвь аксона начинается от немиелинизированного участка. Миелиновые оболочки участков 3 и 4, относящихся к периферической части нервной системы, образованы шванновскими клетками. Утолщение аксона в области вхождения в спинной мозг (переходного участка) соприкасается с одной стороны с олигодендроцитом, а с другой—со шванновской клеткой. (В) Нейрофибриллы, состоящие из нейрофиламентов, видны после окрашивания солями серебра. (Г) Тельца Ниссля (глыбки гранулярной эндоплазматической сети) видны при окрашивании катионными красителями (например, тионином). Внутреннее строение нейронов Цитоскелет всех структур нейрона образован микротрубочками и нейрофиламентами. Тело нейрона содержит ядро и окружающую его цитоплазму— перикарион (греч.peri— вокруг и karyon—ядро). В перикарионе расположены цистерны гранулярной (шероховатой) эндоплазматической сети — тельца Ниссля, а также комплекс Гольджи, свободные рибосомы, митохондрии и агранулярная (гладкая) эндоплазматическая сеть. 1. Внутриклеточный транспорт. В нейронах происходит обмен веществ между мембранными структурами и компонентами цитоскелета: непрерывно синтезируемые в соме новые клеточные компоненты перемещаются в аксоны и дендриты путем антероградного транспорта, а продукты метаболизма поступают путем ретроградного транспорта в сому, где происходит их лизосомальное разрушение (распознавание клеток-мишеней). Выделяют быстрый и медленный антероградный транспорт. Быстрый транспорт (300-400 мм в сутки) осуществляют свободные клеточные элементы: синаптические пузырьки, медиаторы (или их предшественники), митохондрии, а также липидные и белковые молекулы (в том числе и белки-рецепторы), погруженные в плазматическую мембрану клетки. Медленный транспорт (5-10 мм в сутки) обеспечивают компоненты цнто-скелета и растворимые белки, в том числе и некоторые белки, задействованные в процессе высвобождения медиаторов в нервных окончаниях. Аксон формирует множество микротрубочек: они начинаются от сомы короткими пучками, которые продвигаются вперед относительно друг друга вдоль начального сегмента аксона; в дальнейшем аксон формируется за счет элонгации (до 1 мм однократно). Процесс элонгации происходит за счет присоединения тубулиновых полимеров на дистальном конце и частичной деполимеризации («разборки») на проксимальном конце. В дистальной части продвижение нейрофиламентов практически полностью замедляется: в этом участке происходит процесс их достраивания за счет присоединения филаментных полимеров, поступающих в этот отдел из сомы посредством медленного транспорта. Ретроградный транспорт метаболитов митохондрий, агранулярной эндоплазматической сети и плазматической мембраны с расположенными в ней рецепторами осуществляется с достаточно высокой скоростью (150-200 мм в сутки). Помимо выведения продуктов клеточного метаболизма, ретроградный транспорт участвует в процессе распознавания клеток-мишеней. В синапсе аксоны захватывают с поверхности плазматической мембраны клетки-мишени сигнальные эндосомы, содержащие белки,— нейротрофины («пища для нейронов»). Затем нейротрофины транспортируются в сому, где встраиваются в комплекс Гольджи. Кроме того, захват таких «маркерных» молекул клеток-мишеней играет важную роль в распознавании клеток в процессе их развития. В дальнейшем этот процесс обеспечивает выживание нейронов, поскольку со временем их объем уменьшается, что может привести к гибели клеток в случае разрыва аксона вблизи его первых ответвлений. Первым среди нейротрофинов был изучен фактор роста нервов, выполняющий особенно важные функции в развитии периферической чувствительной и вегетативной нервной системы. В соме нейронов зрелого мозга синтезируется фактор роста, выделенный из головного мозга (BDNF), который транспортируется антероградно в их нервные окончания. Согласно данным, полученным в результате исследований на животных, фактор роста, выделенный из головного мозга, обеспечивает жизнедеятельность нейронов, принимая участие в обмене веществ, проведении импульсов и синаптической передаче. Внутреннее строение двигательного нейрона. Изображены пять дендритных стволов, три возбуждающих синапса (выделены красным цветом) и пять тормозных синапсов. 2. Механизмы транспорта. В процессе нейронального транспорта роль поддерживающих структур выполняют микротрубочки. Связанные с микротрубочками белки перемещают органеллы и молекулы вдоль внешней поверхности миктротрубочек за счет энергии АТФ. Антероградный и ретроградный транспорт обеспечивают разные виды АТФаз. Ретроградный транспорт осуществляется за счет динеиновых АТФаз. Нарушение функционирования динеинов приводит к болезни двигательного нейрона. Ниже описано клиническое значение нейронального транспорта. Столбняк. При загрязнении раны почвой возможно заражение столбнячной палочкой (Clostridium tetani). Этот микроорганизм продуцирует токсин, который связывается с плазматическими мембранами нервных окончаний, проникает путем эндоцитоза в клетки и посредством ретроградного транспорта попадает в нейроны спинного мозга. Нейроны, расположенные на более высоких уровнях, также захватывают этот токсин путем эндоцитоза. Среди этих клеток необходимо особенно отметить клетки Реншоу, которые в норме оказывают тормозное действие на двигательные нейроны путем выделения тормозного медиатора—глицина. При поглощении клетками токсина выделение глицина нарушается, вследствие чего прекращаются тормозные влияния на нейроны, осуществляющие двигательную иннервацию мышц лица, челюстей и позвоночника. Клинически это проявляется длительными и изнурительными спазмами этих мышц и в половине случаев заканчивается гибелью пациентов от истощения в течение нескольких дней. Предотвратить столбняк возможно, проведя своевременную иммунизацию в должном объеме. Вирусы и токсичные металлы. Считают, что за счет ретроградного аксонального транспорта происходит распространение вирусов (например, вируса простого герпеса) из носоглотки в ЦНС, а также перенос токсичных металлов—алюминия и свинца. В частности, распространение вирусов по структурам мозга осуществляется за счет ретроградного межнейронального переноса. Периферические нейропатии. Нарушение антероградного транспорта — одна из причин дистальных аксональных нейропатий, при которых развивается прогрессирующая атрофия дистальных участков длинных периферических нервов. |