Главная страница

8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах


Скачать 4.43 Mb.
Название8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах
Дата24.01.2020
Размер4.43 Mb.
Формат файлаdoc
Имя файла5132c44.doc
ТипДокументы
#105614
страница11 из 39
1   ...   7   8   9   10   11   12   13   14   ...   39

9.1.3.Гидравлические характеристики вертикальных одиночных труб


В вертикальных трубах при расчете полного сопротивления необходимо учитывать нивелирный напор



Для упрощения решения задачи примем, что ΔpМ ≈ 0 и ΔpУСК ≈ 0. Тогда сопротивление будет включать в себя две составляющие - сопротивление трения ΔpТР и нивелирный напор ΔpНИВ

Δp = ΔpТР + ΔpНИВ.

Сопротивление трения парогенерирующей трубы представим как сумму сопротивления на экономайзерном и испарительном участках

Δp = ΔpЭК + ΔpИСП + ΔpНИВ

или, с учетом (9.32), (9.33) и (8.14 г),



(9.54)

где H - высота панели (разность отметок выходного и входного коллекторов).

Сопротивление трения зависит от длины трубы l, нивелирный напор - от высоты панели Н. Длина трубы и высота панели совпадают только в случае одноходовой вертикальной панели (l = Н). Влияние нивелирного напора здесь самое большое. С увеличением длины трубы l при той же высоте H (горизонтальная навивка, меандровая навивка, многоходовые панели) доля нивелирного напора в общем сопротивлении уменьшается, и при l >> Н гидравлическая характеристика такой панели приближается к характеристике горизонтальной трубы.

На входе в трубу энтальпия среды hВХ, давление рВХ, равномерный обогрев трубы с тепловым потоком ql. При подаче воды с недогревом до кипения в трубе появляется экономайзерный участок lЭК и испарительный lИСП. Энтальпия среды линейно повышается от hВХ до hВЫХ, приращение энтальпии Δh = hВЫХ - hВХ. Давление среды по высоте трубы уменьшается на Δp = ΔpТР + ΔpНИВ. В сечении (точке) закипания воды I-I давление pт.з = pВХ - (ΔpНИВ + ΔpТР)ЭК.

На рис.9.14 показано изменение энтальпии воды на линии насыщения h'(p) по высоте трубы: с уменьшением давления h'(p) также уменьшается. В сечении I - I h(l) = h'(pт.з).



Если принимать давление среды по высоте трубы постоянным и равным рВХ, то была бы постоянной и h'(pВХ). В этом случае закипание воды произошло бы в сечении II, а длина экономайзерного участка lЭКII была бы больше lЭК. Таким образом, действительная длина экономайзерного участка lЭК меньше, чем в случае неучета изменения давления по высоте трубы. Так как Δр зависит от расхода среды G, то и разность должна зависеть от G. Для определения длины экономайзерного участка lЭК составим уравнение теплового баланса



(9.55)

где Δh'нед рассчитывается по недогреву на входе в трубу и снижению энтальпии насыщения из-за уменьшения давления



(9.56)

Тогда



(9.57)

Длина экономайзерного участка



(9.58)

Сопротивление на экономайзерном участке



(9.59)

Подставляем формулы (9.57) и (9.59) в (9.58)



Отсюда



(9.60)

При постоянном давлении в трубе lЭК пропорциональна расходу G, при учете изменения давления рост lЭК при увеличении расхода G замедляется.

Пример. Оценить длину экономайзерного участка для условий: диаметр трубы dВН = 30 мм; тепловой поток ql = 20 кВт/м; ΔhНЕДВХ =100 кДж/кг; давление р = 16 МПа. Справочные данные: λ/d = 0,8 м -1; v' = 0,001693 м3/кг; ρ' = 590,5 кг/м3; h' / p = 4,06·10-5 Δh'/Δp = 4,06·10 -5 .

Решение:



при G = 1 кг/с, lЭКII = 5 м;



Принимаем, :





Определяем комплекс



при G = 1 кг/с

К = 7,14·103, кг/(м2·с2);

Расчеты показывают, что снижение давления по высоте трубы из-за сопротивления трения и нивелирного напора практически не сказывается на длине (высоте) экономайзерного участка lЭК. Для горизонтальной трубы комплекс К в несколько раз меньше (отсутствует ). Поэтому расчеты и анализ гидравлической характеристики будем вести без учета изменения lЭК.

Схема изменения параметров среды по высоте трубы при опускном движении среды представлена на рис.9.15.



Давление среды по ходу движения ее (сверху вниз) растет за счет нивелирного напора и уменьшается за счет сопротивления трения:

Δp = ΔpТР-ΔpНИВ;

(9.61)




pВЫХ = pВХ - Δp = pВХ + ΔpНИВ-ΔpТР;

(9.62)

Соответственно, энтальпия насыщения h'(p) также увеличивается сверху вниз, в точке закипания h'(pТ.З.) = h(lт.з), длина экономайзерного участка lЭК = lТ.З. Если принять энтальпию насыщения постоянной по высоте трубы h'(l) = h'(pВХ), то длина экономайзерного участка будет меньше: (рис.9.15).

Следует обратить внимание на различия в изменении параметров среды при подъемном и опускном движении:
1   ...   7   8   9   10   11   12   13   14   ...   39


написать администратору сайта