Главная страница

8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах


Скачать 4.43 Mb.
Название8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах
Дата24.01.2020
Размер4.43 Mb.
Формат файлаdoc
Имя файла5132c44.doc
ТипДокументы
#105614
страница12 из 39
1   ...   8   9   10   11   12   13   14   15   ...   39

- при подъемном движении давление и энтальпия насыщения по ходу среды уменьшаются; следовательно, если в необогреваемую трубу подавать среду с ΔhНЕДВХ (hВХ = h'(pВХ)), то в ней начнется вскипание воды с энтальпией испарения



Вскипания в необогреваемой трубе не будет, если



- при опускном движении давление и энтальпия насыщения по ходу среды увеличиваются; поэтому при подаче на вход воды с ΔhНЕДВХ = 0 вскипания воды не будет, наоборот, появится недогрев



максимален недогрев на выходе из трубы



С учетом недогрева на входе в трубу ΔhНЕДВХ суммарный недогрев на выходе трубы (внизу)



(9.63)

Таким образом, длины экономайзерного и испарительного участков в вертикальной трубе практически такие же, что и в горизонтальной трубе. Поэтому гидравлическое сопротивление трения в вертикальной трубе можно принимать таким же, как и в горизонтальной, и, следовательно, для его расчета справедливы полученные ранее зависимости, в том числе и учитывающие влияние местного сопротивления и сопротивления ускорения.

Нивелирный напор рассчитывается по формуле (8.91)



(9.64)

Для парогенерирующих труб нивелирный напор можно представить как сумму напоров на экономайзерном и испарительном участках:



где



(9.65а)






(9.65б)

Истинное паросодержание на испарительном участке изменяется от нуля до максимального значения на выходе из трубы φВЫХ. В качестве первого приближения среднеинтегральное значение можно заменить на среднеарифметическое



(9.66)

Проведем графический анализ зависимости ΔpНИВ от расхода среды G.

На рис.9.16а показана зависимость энтальпия среды от расхода среды. При G →∞, h → hВХ. С уменьшением расхода энтальпия растет и достигает значения h' при G1 а затем вода начинает испаряться. При расходе G2 энтальпия среды на выходе h = h", насыщенный пар начинает перегреваться. Таким образом, при G ≥ G1 имеем поток однофазной среды, при G2 < G < G1 есть экономайзерный и испарительный участки, при G < G2 появляется еще участок перегрева пара. Относительная доля (рис.9.16б) экономайзерного участка lЭК / l с уменьшением расхода при G < G1 падает, испарительного участка lИСП/l при G = G1…G2 растет, а при G < G2 - падает; доля участка перегрева при G < G2 увеличивается от 0 до 1 (при G = 0).



В соответствии с этим изменением фазового состава потока будет изменяться и истинное паросодержание: при G > G1 = 0; при G < G1 непрерывно растет, стремясь к 1 при G = 0. Нивелирный напор при подъемном движении ΔpНИВП на участке однофазного потока (G > G1) равен ρ'gH, а при G = 0 (= 1) ΔpНИВП ≈ ρ"gh . Между этими крайними значениями ΔhНИВП изменяется монотонно и более интенсивно при малых расходах (рис.9.17).



При опускном движении среды график зависимости ΔhНИВОП отличается от графика, симметричного ΔhНИВП (пунктирная линия на рис.9.17). Это связано с тем, что при опускном движении коэффициент C > 1 (при подъемном - С < 1), φОП > φП при одинаковом значении х и ΔpНИВОП по абсолютной величине меньше при одинаковом расходе среды. С увеличением расхода среды это различие уменьшается.

Полученные графики используем для построения гидравлических характеристик вертикальных труб.

На рис.9.18 показана зависимость ΔpГ (для примера взята однозначная зависимость) и ΔpНИВ от расхода среды для одноходовой трубы с подъемным движением, а на рис.9.19 - с опускным движением среды. Видно, что суммарная гидравлическая характеристика при подъемном движении остается однозначной, а при опускном появляется зона многозначности (wρ < wρМИН), когда одному перепаду давления Δp соответствуют два расхода среды. Следовательно, при опускном движении потока нивелирный напор ухудшает гидравлическую характеристику.





При построении гидравлической характеристики труб с двумя вертикальными участками (П-, U-образные компоновки панелей) необходимо иметь в виду, что на втором участке (по ходу среды) энтальпия среды выше, чем на первом.

Следовательно, средняя плотность среды на втором участке ρII всегда ниже, чем на первом участке : В зависимости от последовательности ходов (подъемный - опускной или наоборот) суммарный нивелирный напор будет иметь разный знак. При П - образной компоновке (рис.9.20) наблюдается подъемно-опускная схема движения потока.



В этом случае нивелирный напор будет равен



Так как то ΔpНИВ > 0. При G → 0 средняя плотность на обоих участках стремится к плотности пара, а разность - к нулю. С другой стороны, при G → ∞ в обеих ветвях будет вода и разность - также стремится к нулю. Следовательно, зависимость ΔpНИВ = f(G) имеет максимум при каком-то значении G. Полная гидравлическая характеристика Δp = ΔpГ+Δ pНИВ может иметь зону многозначности.

Для U-образной компоновки последовательность движения обратная: схема опускная-подъемная, нивелирный напор при этом отрицателен



В целом гидравлическая характеристика труб U-образной системы компоновки (рис.9.21) неоднозначна в широком диапазоне расходов среды.



Таким образом, гидравлические характеристики труб имеют значительный диапазон неоднозначности, что накладывает существенные ограничения на допустимые значения расхода среды.

Аналогично можно построить гидравлические характеристики для N-образных и более сложных компоновок поверхностей нагрева.
1   ...   8   9   10   11   12   13   14   15   ...   39


написать администратору сайта