Главная страница

8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах


Скачать 4.43 Mb.
Название8. Характеристики и виды движения водного теплоносителя в паровых котлах Гидродинамика водного теплоносителя в паровых котлах
Дата24.01.2020
Размер4.43 Mb.
Формат файлаdoc
Имя файла5132c44.doc
ТипДокументы
#105614
страница23 из 39
1   ...   19   20   21   22   23   24   25   26   ...   39

Унос влаги паром характеризуется его влажностью ω, %, которая определяется как отношение массы водяных капель mВ к массе влажного пара



(9.145)

где mП - масса паровой фазы.

Таким образом, влажность пара определяется забросом капель воды в пароотводящие трубы и уносом капель потоком пара. При малых высотах парового пространства основную роль играет прямой заброс водяных капель, а при больших высотах - унос влаги. Поэтому ω сильно зависит от высоты парового пространства (рис.9.59), особенно до высоты 0,8…1 м.



Зависимость влажности пара от его скорости w"0 сложная и имеет вид

ω = С(w"0)n.

(9.146)

Это связано с распределением капель воды по размерам по скорости их витания (рис. 9.60а).



При малой скорости пара, условно - до w1 (рис. 9.60б), показатель степени n < 2; с увеличением скорости пара уносятся паром все более крупные капли, показатель степени увеличивается до 4…5; при скорости пара w"0 приближающейся к wВИТСР (рис. 9.60), резко возрастают количество и масса унесенных капель воды, влажность возрастает с показателем степени n > 5…6.

В диапазоне скорости пара w0" и влажности пара ω = 0,01 - 0,1%, в котором работают промышленные агрегаты, расчет влажности можно вести по формуле



(9.147)

Коэффициент С зависит от давления и характеризует физические свойства пара и жидкости (рис.9.61). С увеличением давления коэффициент поверхностного натяжения s снижается, соответственно уменьшается размер капель воды, скорость витания падает, а количество капель увеличивается. Кроме того, увеличивается несущая способность пара за счет роста его плотности. Поэтому при изменении давления от 10 до 16 МПа коэффициент С и влажность пара о изменяются в 5 раз. Отсюда вытекает необходимость снижения приведенной скорости пара у зеркала испарения (нагрузки зеркала испарения) при проектировании парового котла на более высокое давление (рис.9.62), что вызывает увеличение размеров барабана. Второй путь снижения влажности пара - использование сепарационных установок внутри барабана.



Влияние примесей на динамический двухфазный слой и унос влаги определяется наличием в котловой воде (воде барабана и контура циркуляции) поверхностно-активных веществ. Эти вещества концентрируются в жидкой пленке вокруг парового пузыря, увеличивают силы поверхностного натяжения.

При температурах 300…360°С (давление свыше 9 МПа) основную роль в образовании адсорбционных структур в жидкой пленке играют неорганические вещества - продукты коррозии конструкционных материалов, в первую очередь оксиды железа.

Коллоидно-дисперсные частицы гидратов оксидов железа имеют вытянутую форму и при коагуляции образуют пространственную структуру. При низкой концентрации электролитов эти структуры непрочные, распадаются под влиянием других примесей и турбулизации потока. В этом случае поверхностное натяжение s изменяется незначительно, процессы барботажа пара и уноса его практически не претерпевают изменений.

При концентрациях электролитов выше критических СКР происходит упрочнение структуры, в жидкой пленке (поверхностном слое) частицы гидратированных оксидов железа образуют упорядоченную структуру в виде сетки, повышающую вязкость и прочность пленки; поверхностное натяжение резко возрастает.

Упрочнение жидкой пленки, повышение s приводит к тому,что при выходе из погруженного дырчатого листа образуются мелкие пузырьки пара, количество их возрастает. Все это приводит к изменению (увеличению) паросодержания φБАРБ на стабилизированном участке двухфазного слоя (рис.9.63). При низких концентрациях электролитов в котловой воде СК.В, мг/кг, паросодержание φБАРБ не изменяется по сравнению с чистой водой: при концентрации выше критического значения СКР начинается набухание двухфазного слоя, φБАРБ увеличивается. При дальнейшем повышении концентрации СК.В, значения φ стабилизируются на новом, более высоком значении (примерно в 2 раза выше).



Разрушение жидкой пленки вокруг парового пузырька из-за повышения s происходит при меньшей толщине пленки. Замедленное разрушение пузырей пара приводит к их скоплению в переходной зоне двухфазного слоя, в верхней части этой зоны образуется высокодисперсная пароводяная эмульсия (пена), состоящая из паровых пузырей, окруженных тонкой пленкой воды. Доля пара в ней превышает 90…95%. Такое явление называют вспениванием уровня.

На рис.9.64 показано увеличение действительного уровня двухфазного слоя в зависимости от СК.В w0". На рисунке видно, что увеличение уровня достигает 200…300 мм.



С увеличением давления в барабане котла СКР снижается, т.е. процессы набухания и вспенивания начинаются при более низких концентрациях, следовательно, для их предотвращения требуется более чистая вода.

При разрыве более мелких паровых пузырей с тонкой жидкой пленкой образуется большое количество мелких капель воды, их доля возрастает в потоке капель влаги.

Оба процесса, имеющие место при высокой концентрации примеси (СК.В > СКР), уменьшение высоты парового пространства и увеличение доли мелких капель воды - приводят к резкому возрастанию уноса влаги паром.

На рис.9.65,а показана зависимость влажности пара ω от концентрации примеси в воде. Видно, что при СК.В > СКР влажность сильно возрастает. На рис.9.65,б приведен график изменения концентрации примеси в насыщенном паре CnУН, поступающей в него с уносимой влагой, ( ω - в %)

CПУН = 0,01СК.Вω

При ω = const концентрация примесей CnУН пропорциональна СК.В, а при СК.В > СКР зависит и от ω. Из графиков рис.9.65 можно определить по предельно допустимой концентрации (CУНn)ПР допустимые значения (СК.В)ПР и ω ПР. Способы воздействия на СП и СК.В рассмотрены в гл.11 и 12. Выполнить условие w ≤ wДОП можно за счет ограничения нагрузки на зеркало испарения (Rsv или Rsm).

На рис.9.66 показано, что при СК.В < СКР нагрузку на зеркало испарения можно поддерживать на высоком уровне, при этом ω = ωПР .



При С > СК.В для выдерживания условия ω = ωПР нагрузку приходится снижать, при (СК.В)ПР получаем значение (Rsm)ПР , обеспечивающее предельно допустимый режим по (CnУН)ПР. Кривая на рис.9.66 разделяет плотность Rsm - CК.В на две части, в которых ω меньше или больше ωПР. Влажность пара, уходящего из барабана, можно уменьшить по сравнению с уносом влаги путем организации сепарационных устройств.
1   ...   19   20   21   22   23   24   25   26   ...   39


написать администратору сайта