РАДИОБИОЛОГИЯ. Аношин Алексей Алексеевич 3 курс Шифр 5776 36. 03. 02 Зоотехния Балашиха, 2021 закон
Скачать 61.29 Kb.
|
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ЗАОЧНЫЙ УНИВЕРСИТЕТ» КОНТРОЛЬНАЯ РАБОТА РАДИОБИОЛОГИЯ Аношин Алексей Алексеевич 3 курс Шифр 5776 36.03.02 – «Зоотехния» Балашиха, 2021 8. Закон радиоактивного распада. Для каждого радиоактивного вещества существует характерный интервал времени, называемый периодом полураспада. Период полураспада - это промежуток времени, за который распадается ровно половина всех ядер. Например, если в некоторый момент времени вещество состоит из N ядер, то через время T, равное периоду полураспада ядер, останется N/2 ядер и т.д. Закон радиоактивного распада Исследования показали, что радиоактивные элементы могут иметь самые различные периоды полураспада - от десятимиллионных долей секунды, до миллиардов лет. Но период полураспада для каждого данного вещества определенный, и не изменяется при изменении внешних условий (давлении, температуры и т.д.) 29. Рассчитать величину поглощенной дозы (рад), получаемую работником за время работы с радиоактивными веществами. Мощность дозы - 2,5 мР/ч ; Время работы -16 t (ч). 31. Общие закономерности перемещения радиоактивных веществ в биосфере. Радиоактивные продукты ядерного деления выпадают сами по себе («сухие» осадки), с атмосферными осадками («мокрые» осадки), радиоактивные отходы, включаются в компоненты биосферы — абиотические (почва, вода) и биотические (флора, фауна) и принимают участие в биологическом цикле круговорота веществ. Наиболее короткий путь поступления радиоактивных продуктов деления в организм человека: непосредственного попадания из атмосферы, через сельскохозяйственные растения и животных. При этом продукты деления могут попадать в организм человека как непосредственно через растительную пищу, так и через животных, питающихся растениями, содержащими радиоактивные вещества. Из радиоактивных продуктов деления в первый период наибольшую опасность представляют изотопы йода вследствие наиболее высокого относительного содержания их и значительной биологической токсичности. В последующем основную роль играют 90Sr и 137Cs из-за их относительно высокой энергии излучения, большого периода полураспада и способности активно включаться в биологический круговорот веществ (почва — растения — животные — человек). Эти изотопы способны надолго задерживаться в организме человека и животных. При поступлении с кормом в организм 90Sr его постоянным неизотопным носителем служит кальций, а для 137Cs — калий. В организме животных калий и кальций представлены как макроэлементы. При исследовании закономерностей передвижения 90Sr и 137Cs от одного объекта биосферы к другому было замечено, что первый ведет себя сходно с кальцием, второй — с калием. Это обстоятельство имеет большое практическое значение для радиохимической экспертизы. Например, установлено, что при равных условиях в объектах биосферы, загрязненных радионуклидами, максимальная концентрация 90Sr всегда обнаруживается в органах (продуктах), физиологически богатых кальцием (кости, яичная скорлупа), а максимальная концентрация 137Cs — в объектах, богатых калием (например, мышцы). Физико-химическое состояние радионуклидов в воде, почве и растениях Формы состояния радионуклидов в почве: - водорастворимая, - обменная, - необменная, - прочносвязанная необменная. Первые две формы способны усваиваться растениями и, следовательно, мигрировать по биологической цепочке. Каждый из радионуклидов присутствует в почве в водорастворимой, обменной и необменной формах одновременно, однако соотношение между этими формами для разных радионуклидов существенно различается. В почве радионуклиды находятся в разном физико-химическом состоянии. Биологическая подвижность радионуклидов (способность мигрировать по пищевым цепочкам) зависит от: их физико-химических свойств, свойств самой почвы (тип, минеральный состав, кислотность, содержание органических веществ, увлажненность, длительность ее использования в агроэкосистемах и т. д.) Наиболее доступен для растений - стронций, который на 73,7 % в глобальных выпадениях находится практически полностью в водорастворимой форме, 137Cs — в пределах 44,9 %, а 144Се — около 13 %. Радионуклиды редкоземельных элементов, а также 185W и 95Zr находятся в выпадениях как в водорастворимой, так и нерастворимой формах, причем для 93Zr и 144Се характерно преобладание нерастворимой формы. Радионуклиды редкоземельных элементов, а также радионуклидов из группы нейтронной активации (52, 54Mn, 55Fe,58,60Со) в воде образуют малорастворимые соединения. Доступность радионуклидов для растений зависит от наличия в почве обменных катионов — элементов-носителей (чем больше в ней элементов-носителей, тем меньше биологическая подвижность радионуклидов, и наоборот), кислотности (чем выше кислотность почв, тем более доступны радионуклиды для растений). Радиоактивный стронций находится в почве в подвижной форме (до 98 %). Основная часть цезия сорбируется в почве достаточно прочно С течением времени обменно-связанные радионуклиды могут превращаться в слаборастворимые соединения — фосфаты и карбонаты, в результате чего их миграционная способность может снизиться. В почве 90Sr связывается в основном за счет ионного обмена, сильно зависит от присутствия катионов А1+3, Fe+3, Ba+2, Ca+2, Mg+2 При увеличении в почве концентрации анионов фосфорной, серной и угольной кислот сорбция стронция возрастает в результате образования труднорастворимых соединений с этими анионами. Глинистыми минералами почв может быть сорбировано до 99 % 90Sr. Органические вещества также оказывают влияние на поведение этого нуклида, в частности он хорошо связывается с сульфокислотами почв, что также снижает его способность к биологической миграции. Типы миграций радионуклидов в почве: - в горизонтальном направлении, - вертикальном. В зависимости типа почв различаются формы нахождения радионуклидов. Например, в дерново-подзолистых почвах в обменной форме находится до 20 % общего количества цезия. В почвах других типов в обменной форме его находится в 1,5...2 раза меньше. Но на сильнокислых легких почвах относительное содержание цезия, доступного для растений, достигает 35...40 %. На длительно используемых дерново-подзолистых почвах при прочих равных условиях подвижность 137Cs увеличена. Большая подвижность радиоактивного цезия определяется тем, что это изотоп щелочного элемента — химического аналога важнейшего биогенного элемента калия, который в природных системах служит носителем изотопов цезия. В дерново-подзолистых супесчаных почвах Полесья, бедных слюдистыми минералами, до 70 % 137Cs сравнительно равномерно распределяется по профилю почвы на глубину 20...30 см, что свидетельствует о его интенсивной миграции даже на целинных участках. В почвах других ландшафтов до 90 % 137Cs сорбируется в верхних слоях почвы (0...5 см). При использовании заглубленной вспашки таких почв на верхний 20—30-сантиметровый слой приходится до 79 % радиоактивного цезия. Микроорганизмы почвы снижают подвижность радионуклидов в биологическом круговороте. Они могут связывать до 60 % Cs и этим препятствовать его дальнейшей миграции по пищевой цепочке. По профилю почв естественных экосистем 90Sr распределяется с меньшей закономерностью, но более интенсивно, чем цезий, вследствие своей более высокой подвижности. Радиационно-экологическая обстановка на загрязненных территориях изменяется в основном в результате естественного радиоактивного распада, вторичного ветрового переноса и вертикальной миграции. При этом происходит загрязнение чистых территорий сельхозпродукцией, техникой, животными, в том числе птицами, и т. д. Попавшие в растения радионуклиды распределяются в них по-разному. Одни концентрируются в корнях, другие — в надземной части растений, преимущественно в стеблях, листьях, семенах и т. д. Причем в растениях они находятся в виде подвижной фракции и связанной со структурно-функциональными компонентами. Чем больше в растениях свободной фракции радионуклидов, тем более они доступны для усвоения организмом моногастричных животных. Для полигастричных вследствие особенностей их пищеварения эти взаимоотношения гораздо сложнее. Состояние и обмен радионуклидов в органах и тканях животных зависят от многих причин, в том числе и от их физико-химических свойств, среди которых важная роль принадлежит их способности к комплексообразованию и взаимодействию с тканевыми структурами. Фаза вегетации имеет большое значение в накоплении растениями радионуклидов . Листья молодых растений поглощают радионуклиды в значительно больших количествах, чем листья растений, заканчивающих рост и развитие. Фаза развития растений имеет значение при удержании на их поверхности малоподвижных радионуклидов. Радиоактивные вещества, выпавшие на поверхность почвы из атмосферы и осевшие с поверхности растений, могут служить существенным источником повторного механического их загрязнения уже после прекращения выпадения радиоактивных осадков. Загрязнение растений радиоактивной пылью происходит при поднятии ее с поверхности земли ветром, пасущимися животными, при разбрызгивании каплями дождя и обработке или уборке урожая сельскохозяйственными машинами. Дополнительный вклад 90Sr, 106Ru и 144Се в процессе уборки естественных трав может достигать 50 % поступления 90Sr через корневые системы. При некорневом радионуклидном загрязнении растительности переход их из корма в организм животных и продукцию животноводства, как правило, выше, чем при корневом поступлении. При непрерывных глобальных выпадениях наиболее высокие концентрации радионуклидов обнаруживаются в продукции растениеводства, меньшие — в продукции животноводства. Концентрация 90Sr и !37Cs в кормах превосходит концентрацию в молоке соответственно в 100 и 30 раз, в мясе — в 50 и 10 раз. Наибольшей подвижностью в цепи «воздух — растение — животные — продукция животноводства» обладают 90Sr, 131I и 137Cs, менее подвижны 106Ru, 144Се и изотопы U. 42. Поступление радионуклидов в молоко животных. При пастбищном содержании и кормлении коров поступление изотопов в молоко происходит наиболее интенсивно, особенно в условиях внешнего загрязнения растений. При среднем уровне травостоя корова в сутки потребляет корм со 160 м2 пастбища. В таких условиях максимальная концентрация I в молоке наблюдается на 5-е сутки после выпадения. Прогнозируемое поступление радионуклидов в корма, молоко и мясо можно определить по формуле: C=KvFv где С – содержание i-го радионуклида в кормах или продуктах животноводства, Бк/кг; Кv – воздушный коэффициент пропорциональности при выпадении за месяц, (Бк/кг)/(Бк/м2); Fv – интенсивность выпадения за месяц i-го радионуклида, Бк/м2. Так как содержание радионуклидов в продукции животноводства находится в прямой зависимости от содержания их в растениях и почвах, то для составления прогноза вероятного поступления радионуклидов в рационы животных необходимо располагать количественными характеристиками, связывающими концентрацию радионуклидов в почвах, кормах и продукции животноводства. Эта связь осуществляется с помощью коэффициента перехода, под которым понимают отношение содержания радионуклида в каждом последующем звене пищевой цепочки к предыдущему. По отношению к дерново-подзолистым и торфяно-песчаным почвам коэффициент перехода Cs из дерново-торфяно-иловато-болотных почв в 3,5, из суглинистых, торфяно-болотных почв в 48, а из темно-серых почв в 64 раза меньше. При хроническом поступлении с кормом Sr в 1 л молока его переходит до 0,2% по отношению к поступлению с рационом. При этих условиях в молоко коров переходит 0,25-1% Cs. На эти показатели большое влияние оказывают тип кормления коров, состав корма, продуктивность животных и т. д. Усвояемость организмом радиоактивного цезия из смешанного рациона выше, чем из сенного, вследствие разной степени его доступности. При одинаковом содержании Sr и Cs в почве концентрация стронция в траве получается примерно в 10 раз выше, чем цезия. Содержание щелочных и щелочноземельных радионуклидов в мышечной и костной тканях выше, чем в получаемом от этих животных молоке. 63. Технологические приемы переработки загрязнений радионуклидами продукции животноводства. Технологические способы переработки молока и молочных продуктов. Прежде всего, надо помнить, что загрязненное радионуклидами молоко следует перерабатывать на жирные молочные продукты. Радионуклиды цезия и стронция не связаны с жировой частью молока. Технологическая переработка загрязненного молока на сливки, сметану, творог, сыр, сгущенку позволяет получить продукты с более низким содержанием радионуклидов. Способ основан на том, что некоторые радиоизотопы, как, например, цезий-137 сравнительно хорошо растворимы в водной части молока. · Чтобы разрушить соединения стронция с белками и перевести его также в растворимую фазу, молоко подкисляют лимонной или соляной кислотами, с которыми он образует соли, свободно переходящие в водную фазу. В последующем соли этих веществ легко удаляются с сывороткой и пахтой. · В процессе сепарирования основная масса радиоизотопов удаляется с обезжиренным молоком, и получаются сливки с содержанием радиоактивных веществ в значительно меньших количествах. При сбивании сливок в масло происходит дальнейшее удаление радиоизотопов. При длительном хранении сливочного масла происходит распад оставшихся радионуклидов. · Для получения творога и сыра необходимо свертывание молока. В результате этого процесса при приготовлении сыров сычужным способом содержание цезия-137 в готовом продукте уменьшается в 8-10 раз, а содержание стронция-90 только на 20%. При использовании кислотных способов приготовления сыров, стронций-90 будет образовывать растворимые соли, которые выводятся с сывороткой во время прессования продукта. Технологические способы переработки мяса и мясных продуктов Перед убоем животных в зависимости от степени радиоактивной загрязненности моют 0,3--0,5%-ными растворами моющих или поверхностно-активных веществ или водой под давлением (до трех атмосфер), добиваясь снижения уровня внешнего гамма-излучения ниже 50 мк Р/ч. Если же не удается обработкой снизить радиоактивную загрязненность до допустимой нормы, таких животных выделяют в обособленную группу и выдерживают под наблюдением до спада радиоактивности. Людей, работающих с загрязненными животными, обеспечивают индивидуальными дозиметрами и спецодеждой. После работы проводят им санитарную обработку и дозиметрический контроль. Обязательным условием при переработке скота является дополнительная мойка животных водой перед убоем, наложение лигатуры на пищевод перед обескровливанием и на прямую кишку при заделке проходника, отделение и захоронение щитовидной железы. При забеловке и съемке шкур принимают меры по предотвращению загрязнения туш, не допуская их контакт с шерстным покровом шкуры. Чтобы предотвратить загрязнение поверхности туш содержимым желудка и кишок, последние удаляют одновременно. После разделения туш на полтуши и зачистки поверхности юс тщательно промывают водой, после чего проводят радиометрический контроль. При содержании радиоактивных веществ в пределах допустимых уровней туши направляют в холодильник. Такое мясо используют на общих основаниях. В случаях превышения уровня радиоактивной загрязненности туши хранят в отдельных камерах холодильника до снижения радиоактивности до допустимых норм и используют их в последнюю очередь. Наряду с этим, учитывая, что мышцы имеют обычно значительно меньшую радиоактивность, чем кости, целесообразно произвести обвалку туш. Радиоактивная загрязненность мяса после этого уменьшается. Мясо животных, подвергшихся только внешнему облучению и убитых до появления признаков лучевой болезни или после клинического выздоровления, выпускают без ограничений, если оно отвечает другим санитарно-гигиеническим требованиям. Если убой проводят на полевом убойном пункте, то его необходимо обеспечить достаточным количеством воды, оборудовать ямы для стока смывных вод и утилизации органов желудочно-кишечного тракта с содержимым и конфискатов, приготовить место для сбора и консервирования кож. Места, где производился убой животных, затем необходимо тщательно дезактивировать или оградить. Кожи, снятые с животных, пораженных проникающей радиацией, а также загрязненные радиоактивными веществами ниже допустимого уровня, выпускают без ограничений. Мясо разных животных по-разному накапливает радионуклиды - в свинине их значительно меньше, чем в баранине, говядине и мясе птицы. · Цезий откладывается преимущественно в мясе, стронций - преимущественно в костях. Накопление цезия в отдельных органах и тканях животных уменьшается в ряду: почки, печень, селезенка, сердце, легкие, мышцы, мозги, жир. · Способ дезактивации мяса, загрязненного цезием-137, выбирают исходя из реальной обстановки. Это может быть вываривание в воде, мокрый посол, вымачивание. Следует помнить, что чем больше жидкости и чем меньше куски мяса, тем эффект выше. Воду рекомендуется несколько раз менять. При загрязнении мяса стронцием-90 хороший эффект дает отделение мяса от костей. При этом большая часть стронция-90 остается в костях, а мясо после радиометрического контроля обрабатывается по вышеупомянутой методике. · Рекомендуется проводить по возможности рациональную кулинарную обработку, предусматривающую, в частности, приготовление не жареных, а вареных мясных продуктов. При обычной варке из мяса в бульон переходит 50% радионуклидов, а из костей - 1%. Это необходимо учитывать при приготовлении первых блюд. При жарке мяса содержание радионуклидов в мясе не изменяется. · Рыбу желательно ловить в реках и проточных водоемах. · Наиболее загрязненными являются придонные хищные рыбы - карась, линь, окунь, щука, карп, сом, а наименее - обитатели верхних слоев воды - плотва, судак, лещ. |