Главная страница
Навигация по странице:

  • При многих инфекционных заболеваниях

  • Все аллергические пробы подразделяют на две группы

  • Аллергические пробы in vitro

  • Для проведения аллергических проб

  • Пробы in vitro

  • Реакция торможения миграции лейкоцитов (РТМЛ).

  • Реакция бласттрансформации лимфоцитов (РБТ).

  • Реакция специфического розеткообразования.

  • Реакция дегрануляции тканевых базофилов.

  • Базофильный тест Шелли.

  • Определение антител класса IgE in vitro.

  • Антибиотики. Природные и синтетические. История открытия природных антибиотиков. Классификация антибиотиков по химической структуре, механизму, спектру и типу действия. Способы получения


    Скачать 163.53 Kb.
    НазваниеАнтибиотики. Природные и синтетические. История открытия природных антибиотиков. Классификация антибиотиков по химической структуре, механизму, спектру и типу действия. Способы получения
    Анкорekzamen_mikra_docx-1873179788.docx
    Дата26.04.2017
    Размер163.53 Kb.
    Формат файлаdocx
    Имя файлаekzamen_mikra_docx-1873179788.docx
    ТипДокументы
    #5488
    страница9 из 14
    1   ...   6   7   8   9   10   11   12   13   14

    Аллергические пробы - биологические реакции для диагностики ряда заболеваний, основанные на повышенной чувствительности организма, вызванной аллергеном.

    При многих инфекционных заболеваниях за счет активации клеточного иммунитета развивается повышенная чувствительность организма к возбудителям и продуктам их жизнедеятельности. На этом основаны аллергические пробы, используемые для диагностики бактериальных, вирусных, протозойных инфекций, микозов и гельминтозов. Аллергические пробы обладают специфичностью, но нередко они бывают положительными у переболевших и привитых.

    Все аллергические пробы подразделяют на две группы — пробы in vivo и in vitro.

    К первой группе (in vivo)относятся кожные пробы, осуществляемые непосредственно на пациенте и выявляющие аллергию немедленного (через 20 мин) и замедленного (через 24 — 48 ч) типов.

    Аллергические пробы in vitro основаны на выявлении сенсибилизации вне организма больного. Их применяют тогда, когда по тем или иным причинам нельзя произвести кожные пробы, либо в тех случаях, когда кожные реакции дают неясные результаты.

    Для проведения аллергических проб используют аллергены — диагностические препараты, предназначенные для выявления специфической сенсибилизации организма. Инфекционные аллергены, используемые в диагностике инфекционных заболеваний, представляют собой очищенные фильтраты бульонных культур, реже взвеси убитых микроорганизмов или АГ, выделенные из них.

    Кожные пробы. Инфекционные аллергены вводят, как правило, внутрикожно или накожно, путем втирания в скарифицированные участки кожи. При внутрикожном способе в среднюю треть передней поверхности предплечья специальной тонкой иглой вводят 0,1 мл аллергена. Через 28 — 48 ч оценивают результаты реакции ГЗТ, определяя на месте введения размеры папулы.

    Неинфекционные аллергены (пыльца растений, бытовая пыль, пищевые продукты, лекарственные и химические препараты) вводят в кожу уколом (прик-тест), накожно путем скарификации и втирания или внутрикожной инъекцией разведенного раствора аллергена. В качестве отрицательного контроля используют ИХН, в качестве положительного — раствор гистамина. Результаты учитывают в течение 20 мин (ГНТ) по величине папулы (иногда до 20 мм в диаметре), наличию отека и зуда. Внутрикожные пробы ставят в случае отрицательного или сомнительного результата прик-теста. По сравнению с последним, дозу аллергена уменьшают в 100-5000 раз.

    Кожные пробы на наличие ГЗТ широко применяют для выявления инфицированности людей микобактериями туберкулеза (проба Манту), возбудителями бруцеллеза (проба Бюрне), лепры (реакция Митсуды), туляремии, сапа, актиномикоза, дерматомикозов, токсоплазмоза, некоторых гельминтозов и др.

    Пробы in vitro. Эти методы исследования безопасны для больного, достаточно чувствительны, позволяют количественно оценить уровень аллергизации организма.

    В настоящее время разработаны тесты для определения сенсибилизации, основанные на реакциях Т- и B-лимфоцитов, тканевых базофилов, выявлении общих специфических IgE в сыворотке крови и др. К ним относятся реакции торможения миграции лейкоцитов и бласттрансформации лимфоцитов, специфическое розеткообразование, базофильный тест Шелли, реакция дегрануляции тканевых базофилов, а также аллергосорбентные методы (определение специфических IgE в сыворотке крови).

    Реакция торможения миграции лейкоцитов (РТМЛ). РТМЛ основана на подавлении миграции моноцитов и других лейкоцитов под действием медиаторов, вырабатываемых сенсибилизированными лимфоцитами, в присутствии специфического аллергена.

    Реакция бласттрансформации лимфоцитов (РБТ). В основе этой реакции лежит способность нормальных лимфоцитов периферической крови вступать в митоз и превращаться в бластные формы при культивировании их in vitro под действием специфических факторов — аллергенов и неспецифических стимуляторов митогенеза — митогенов (фитогемагглютинин, конканавалин А, липополисахариды и другие вещества).

    Реакция специфического розеткообразования. Розетки — характерные образования, возникающие in vitro в результате прилипания эритроцитов к поверхности иммунокомпетентных клеток. Розеткообразование может происходить спонтанно, поскольку Т-лимфоциты человека содержат рецепторы к эритроцитам барана. Спонтанное розеткообразование здоровых людей составляет 52 — 53% и служит показателем функционального состояния Т-лимфоцитов. Этот феномен воспроизводится также и в том случае, если используют эритроциты, на которых фиксированы соответствующие аллергены.

    Реакция дегрануляции тканевых базофилов. Методика основана на том, что под действием аллергена происходит дегрануляция тканевых базофилов крысы, предварительно сенсибилизированных цитофильными AT из сыворотки крови больного.

    Базофильный тест Шелли. Известно, что базофильные гранулоциты человека или кролика также дегранулируются в присутствии сыворотки больного и аллергена, к которому чувствителен данный пациент.

    Определение антител класса IgE in vitro. Лабораторная диагностика заболеваний, в основе которых лежит ГНТ, основана на определении аллергенспецифических IgEанти-IgE. При использовании радиоактивной метки метод носит название радиоаллергосорбентного теста (PACT), но чаще в качестве метки используют фермент или флюоресцирующее вещество (ФАСТ). Время анализа — 6 — 7 часов. Принцип метода: фиксированный на твердой основе известный аллерген инкубируют с сывороткой крови больного; находящиеся в сыворотке специфические IgEанти-IgE связываются с аллергеном и, таким образом, остаются фиксированными на основе и могут вступать в специфическое взаимодействие с добавляемыми мечеными анти-IgE.
    42. Молекулярные вакцины. Анатоксины. Получение, очистка, титрование. Применение.

    Молекулярные вакцины – в них антиген находится в молекулярной форме или даже в виде фрагментов его молекул, определяющих специфичность т. е. в виде эпитопов, детерминант.

    В процессе культивирования природных патогенных микробов можно получить протективный антиген, синтезируемый этими бактериями токсин затем превращается в анатоксин, сохраняющий специфическую антигенность и иммуногенность. Анатоксины являются одним из видов молекулярных вакцин. Анатоксины – препараты, полученные из бактериальных экзотоксинов, полностью лишенные своих токсических свойств, но сохранившие антигенные и иммуногенные свойства. Получение: токсигенные бактерии выращивают на жидких средах, фильтруют с помощью бактериальных фильтров для удаления микробных тел, к фильтрату добавляют 0,4% формалина и выдерживают в термостате при 30-40t на 4 недели до полного исчезновения токсических свойств, проверяют на стерильность, токсигенность и иммуногенность. Эти препараты называются нативными анатоксинам, в настоящее время почти не используются, т. к. содержат большое количество балластных веществ, неблагоприятно влияющих на организм. Анатоксины подвергают физической и химической очистке, адсорбируют на адъювантах. Такие препараты называются адсорбированными высокоочищенными концентрированными анатоксинами.

    Титрование анатоксинов в реакции фолликуляции производят по стандартной фолликулирующей антитоксической сыворотке, в которой известно количество антитоксических единиц. 1 антигенная единица анатоксина обозначается Lf, это то количество анатоксина, которое вступает в реакцию флокуляции с 1 единицей дифтерийного анатоксина.

    Анатоксины применяются для профилактики и реже, для лечения токсинемических инфекций (дифтерия, газовая гангрена, ботулизм, столбняк). Так же анатоксины применяются для получения антитоксических сывороток путем гипериммунизации животных.

    Примеры препаратов: АКДС, АДС, адсорбированный стафилококковый анатоксин, ботулинистический анатоксин, анатоксины из экзотоксинов возбудителей газовых инфекций.
    43. Антигены. Антигены (от греч. anti — против, genos — рождение)— чужеродные органические вещества, которые при введении в организм вызывают образование специфических антител, способных вступить в реакцию с антигенами.

    Антигенами могут быть вещества белковой природы, соединения белков, липидов и полисахаридов, микробы и их токсины, клетки животных и растений, чужеродные сыворотки и др.

    Полноценные антигены обладают способностью вызывать образование антител в организме и вступают с ними в определенное, специфическое, взаимодействие. Результат его можно наблюдать в пробирках при соединении антигена и соответствующего ему антитела.

    Неполноценные антигены не вызывают образования антител в организме, но становятся полноценными, если их вводят в состав белка или они соединяющийся с белками организма. Среди неполноценных антигенов различают гаптены и полугаптены. Гаптены — сложные органические вещества, имеющие небольшую молекулярную массу (полисахариды, липиды, нуклеиновые кислоты). Гаптены не способны вызвать образование антител, но при наличии готовых антител вступают с ними в реакцию. Взаимодействие гаптенов и антител можно увидеть в реакции преципитации. Полугаптены — простые химические вещества (йод, бром, азокраски, азопротеины), которые в отличие от гаптенов при соединении с готовыми антителами блокируют их, но не дают видимых проявлений иммунологических реакций.

    В природе широко распространены так называемые комплексные антигены, которые состоят из гаптена, играющего роль специфической группы, и белка-носителя. Сыворотки и тканевые жидкости животных и человека, антигены микроорганизмов и растений представляют собой комплексные антигены.

    Свойства антигенов. Антигены обладают двумя свойствами:

    1) антигенностью, т. е. способностью вызывать в организме выработку антител;

    2) специфичностью, которая выражается в способности антигенов взаимодействовать только с теми антителами, которые выработались в ответ на введение данного антигена.
    Антигенность вещества зависит от его чужеродности для организма, от величины и сложности строения молекулы, растворимости и коллоидного состояния в растворе. Все эти свойства присущи белкам или белковой части антигена.

    Однако до сих пор остается невыясненным компонент молекулы, с которым связаны эти свойства. Антиген сохраняет свою чужеродность только в том случае, если его вводят парентерально: под кожу, в вену, мышцу.

    В желудочно-кишечном тракте антиген расщепляется на более простые соединения — аминокислоты, жирные кислоты, сахара — и теряет чужеродность.
    Величина молекулы и сложность ее строения имеют большое значение. Чем крупнее молекулы, тем сильнее выражена антигеннность. Молекулы с молекулярной массой менее 5000 редко стимулируют выработку антител. Наилучшими антигенами являются молекулы с молекулярной массой от 500 000 и выше.

    Химическая структура вещества в значительной степени определяет активность антигена. Даже не-значительные изменения химической структуры одинаковых белков делают их разными антигенами.

    Обязательным свойством антигена является его растворимость. Только в растворенном состоянии он может всосаться и вызвать образование антител.
    44. Вакцины. Для специфической профилактики и лечения инфекционных заболеваний большое значение имеют вакцины и иммунные сыворотки. Специфические иммунные сыворотки используют также как диагностические препараты при определении антигенной структуры возбудителя инфекционного заболевания.

    Вакцины. Препараты, введение которых предохраняет от заболевания. Содержат убитые микробы (корпускулярные вакцины), антигены микробов, полученные химическим путем (химические вакцины), или живые ослаб¬ленные микробы (аттенуированные вакцины). Препараты, приготовленные из токсинов, называют анатоксинами. Наилучший защитный эффект получают при введении вакцин, содержащих живые ослабленные микробы.

    Живые аттенуированные вакцины содержат живые микробы, вирулентность которых ослаблена при сохранении их иммуногенных свойств (от франц. attenuer — ослаблять, смягчать). Для получения аттенуированных культур микробов используют различные методы. Микробы выращивают на питательных средах, неблагоприятных для их роста и размножения (вакцина Кальметта — Герена при туберкулезе), на микроорганизмы действуют различными физическими и химическими веществами, фагами, антибиотиками, последовательно несколько раз заражают невосприимчивых или маловосприимчивых животных. Некоторые аттенуированные вакцины приготовлены из маловирулентных штаммов микробов, выделенных в разное время у больных людей или животных: штамм EV — для чумной вакцины, штамм № 19 — при бруцеллезе,, штамм Мадрид К — при сыпном тифе. В настоящее время применяют вакцины из живых ослабленных микроорганизмов для профилактики туберкулеза (вакцина БЦЖ), бруцеллеза, туляремии, чумы, гриппа, оспы, полиомиелита.

    Убитые вакцины получают, инактивируя микробную взвесь нагреванием, добавлением формалина, спирта, ацетона, облучая ее ультрафиолетовым светом или разрушая ультразвуком.

    Корпускулярные вакцины содержат цельные микробные клетки, убитые нагреванием или с помощью химических веществ.

    Химические вакцины готовят путем разрушения микробных клеток с последующим извлечением из них различных антигенных фракций. 
    Корпускулярные и химические вакцины используют для профилактики брюшного тифа, паратифов, холеры, коклюша и других заболеваний. Однако они менее эффективны, чем вакцины, приготовленные из аттенуированных штаммов бактерий.

    Для приготовления вакцин необходимо иметь большое количество микробной массы (биомасса) или вирус содержащего материала. Биомассу получают путем культивирования микробов в питательных средах, помещенных в специальные реакторы или емкости. Вирус содержащий материал получают при заражении восприимчивых животных, культуры тканей или куриных эмбрионов. Существуют различные схемы приготовления вакцин и способы их получения. Готовую вакцину тщательно контролируют. Проверяют ее стерильность, безвредность, эффективность и стандартность, согласно существующей в  системе государственного контроля за качеством препаратов. В настоящее время большинство вакцин выпускается в лиофилизированном (высушенном под вакуумом) состоянии, что обеспечивает их более длительное хранение. Срок годности бактерийных и вирусных препаратов указан на этикетке. Использование препарата по истечении срока годности возможно только после повторной проверки его специфической активности, если это предусмотрено наставлением по применению препарата. Хранить препараты необходимо в холодильнике при температуре не ниже 3°С и не выше 10°С. После замораживания жидких препаратов они непригодны к употреблению. Живые вакцины должны транспортироваться и храниться при температуре не выше 4—8°С. Сухие вакцины обычно имеют вид однородной пористой таблетки или сухого порошка.

    Недопустимо попадание в ампулы влаги и нарушение вакуума. Косвенные показатели повреждения ампул — трещины на стекле и изменение внешнего вида содержимого ампулы, при наличии которых ампулы должны быть изъяты и уничтожены.

    В настоящее время существуют вакцины, которые содержат только один вид микробов — моновакцины, два вида — дивакцины, три вида — тривакцины. Существуют также поливакцины, состоящие из нескольких антигенов. Широкое применение для активной иммунизации получили ассоциированные препараты, пригодные для одновременной прививки против нескольких инфекций. Их готовят из антигенов различных бактерий и их токсинов. Например, дифтерийно-коклюшная вакцина содержит дифтерийный анатоксин и убитые бактерии коклюша; коклюшно-дифтерийно-столбнячная вакцина включает также столбнячный анатоксин. Ассоциированные препараты, как и некоторые моновакцины, выпускают в сорбированном виде, например химическая сорбированная тифо-паратифозно-столбнячная вакцина. В качестве сорбента используют гель гидрата окиси алюминия, который адсорбирует на своей поверхности бактерийные антигены, анатоксины и вирусные частицы. При введении в организм сорбированного препарата образуется депо, из которого антиген медленно всасывается в организм. Это приводит к повышению его иммуногенности и снижает реактогенность препарата — наличие осложнений при его введении. Уплотнение, которое образуется на месте введения сорбированной вакцины, самостоятельно рассасывается в течение 2—3 нед.

    Вакцины применяют для создания активного искусственного иммунитета среди населения с целью профилактики возникновения и распространения инфекционных заболеваний. Более длительный иммунитет возникает при использовании живых ослабленных вакцин, поэтому повторно их вводят (ревакцинация) через 4—5 лет, как, например, при натуральной оспе. Иммунитет, полученный после вакцинации убитыми вакцинами, непродолжителен — примерно полгода или год. Поэтому при кишечных
    инфекциях, когда используют убитые вакцины, иммунизацию проводят ежегодно весной, чтобы создать иммунитет к сезонному подъему заболеваемости. Помимо использования вакцин с профилактической целью, их применяют для лечения хронических вяло текущих инфекционных заболеваний: бруцеллеза, фурункулеза, хронической гонореи. Хороший лечебный эффект дают аутовакцины, приготовленные из возбудителей, выделенных из организма больного.

    Вакцины применяют накожно, внутрикожно, подкожно, внутримышечно, внутривенно и через рот. Вакцины из живых микробов, вводят, как правило, однократно, а убитые — двукратно или даже троекратно с интервалами в 1—2 нед.

    При введении вакцин могут возникать общие и местные реакции. Общая реакция: повышение температуры до 38—39°С, недомогание, головная боль. Эти симптомы проходят обычно через 1—3 дня после прививки. Местно через 1—2 дня на месте инъекции могут появиться покраснение и инфильтрация. Некоторые живые вакцины — оспенная, туляремийная, БЦЖ — при накожном и внутрикожном применении вызывают характерные кожные реакции, что свидетельствует о положительном результате прививки.

    Основными противопоказаниями к применению вакцин являются острые инфекционные заболевания, активная форма туберкулеза, нарушение сердечной деятельности, функций печени, почек, эндокринные расстройства, аллергия, заболевания центральной нервной системы. Для каждого вакцинного препарата существует подробный перечень противопоказаний, изложенный в наставлении по применению, приложенном к препарату. В случае эпидемий или при угрожающих жизни показаниях (укус бешеным животным, случаи чумы) необходимо прививать и лиц с выраженными противопоказаниями, но под специальным наблюдением врача.

    Анатоксины. Препараты, полученные из обезвреженных экзотоксинов микробов. Впервые метод приготовления анатоксинов был предложен французским ученым Рамоном. Этот способ применяют и в настоящее время. К фильтрату бульонной культуры микробов, содержащему экзотоксин, добавляют формалин (0,1—0,4% раствор) и выдерживают длительное время в термостате при 37°С. В результате экзотоксин теряет токсические свойства, но сохраняет иммуногенность и антигенность. Анатоксины получены из дифтерийного, столбнячного, ботулинического, стафилококкового экзотоксинов, а также из токсинов возбудителей газовой гангрены, яда некоторых змей и растений. При использовании анатоксинов в организме вырабатывается активный иммунитет (антитоксический). Широко используют для актирной иммунизации против дифтерии и столбняка дифтерийный и столбнячный анатоксины. Стафилококковый анатоксин используют и для лечения заболеваний стафилококковой этиологии. Дифтерийный и столбнячный анатоксины изготовляют в виде отдельных препаратов или комбинированных с другими вакцинами. Как правило, анатоксины выпускают сорбированными на геле гидрата окиси алюминия.

    Анатоксины вводят подкожно или внутримышечно, соблюдая правила асептики. Методы введения и дозировка изложены в наставлении по применению. Анатоксины могут вызывать общие и местные реакции, которые менее выражены, чем при введении вакцин. Противопоказания к применению анатоксинов те же, что и при использовании вакцин.
    Сывороточные препараты. Специфические иммунные сыворотки содержат антитела (иммуноглобулины) к определенным видам микроорганизмов. Сывороточные препараты используют для лечения, так как введение в организм антител обеспечивает быстрое обеззараживание микробов и их токсинов. Иммунные сыворотки применяются также с диагностической целью для определения антигенного состава микроорганизма, выделенного от больного, что позволяет установить вид (тип) микроба. Сывороточные препараты используют и в профилактических целях для быстрого создания невосприимчивости у человека, контактировавшего с больным или с инфицированным материалом. Специфическую иммунную сыворотку вводят, например, детям, имеющим контакт с больными корью или инфекционным гепатитом (болезнь Боткина). При наличии раневых поверхностей вводят противостолбнячную и противогангренозные сыворотки. При введении сыворотки для профилактики столбняка или бешенства ее комбинируют с активной иммунизацией анатоксином или вакциной. Введение сыворотки в организм человека создает пассивный иммунитет.

    Препараты для создания пассивного иммунитета. Различают сыворотки антитоксические,
    которые получают путем иммунизации животных анатоксинами или токсинами микробов, и антимикробные, по¬лученные при многократной иммунизации животных бактериями, эндотоксинами, фильтратами бактерий. Наиболее эффективны антитоксические сыворотки, которые быстро обезвреживают экзотоксины в организме больного. Их применяют для лечения дифтерии, скарлатины, столбняка, ботулизма, газовой гангрены и заболеваний, вызванных стафилококками. Антимикробные сыворотки менее эффективны, поэтому их используют реже. Для получения иммунных антитоксических сывороток иммунизируют здоровое животное, обычно лошадь, токсинами-анатоксинами по специально разработанной схеме. Когда через 10—12 дней в крови животного обнаруживают достаточное количество антител, производят кровопускание и получают сыворотку, которую консервируют хлорофор¬мом (0,75%) или фенолом (0,5%). Контролируют стерильность сыворотки, ее прозрачность и т. д. Для получения Необходимого лечебного эффекта сыворотку приме¬няют в больших объемах (150—250 мл). Сыворотки, как и вакцины, вводят чаще внутримышечно. Для десенсибилизации используют метод Безредки.

    Сывороточные препараты, полученные при иммунизации лошади, содержат, помимо специфических антител, чужеродные для человека белки. Поэтому при повторном введении таких сывороток могут возникать аллергические реакции типа анафилактического шока или сывороточной болезни. В связи с этим разработаны различные методы очистки и концентрации лечебных антитоксических сывороток. Основным из них, применяемым, является метод «Диаферм-3», включающий ферментативный (пептический) гидролиз, позволяющий освободиться от неспецифических белков сыворотки.

    Наибольший терапевтический эффект лечебные сыворотки дают при раннем своевременном введении их больному. Сыворотки против вирусов (если вирус уже проник в клетку) обычно не оказывают лечебного действия и наиболее эффективны при профилактическом введении лицам, контактировавшим с больными.

    Иммуноглобулины (гамма-глобулины) представляю собой белковую фракцию сыворотки, с которой связан специфические функции антител. По эффективности гамма-глобулин, выделенный из сыворотки крови человека намного превосходит иммунные сыворотки. Для получения гамма-глобулина специально подобранных доноров иммунизируют гриппозным, коклюшным и другими антигенами. Для приготовления гамма-глобулина используют два варианта метода Кона — предложенных Н. В. Холчевым (вариант А), и Н. А. Пономаревой и А. С. Нечаевой (вариант Б). Гамма-глобулин получают также из плацентарной и абортной крови, экстрактов плаценты рожениц.
    Гамма-глобулины используют для профилактики кори, полиомиелита, инфекционного гепатита (болезнь Боткина), краснухи, паротита, коклюша и бешенства.
    Концентрированные очищенные иммунные сыворотки и гамма-глобулины можно вводить в небольших количествах (3—6 мл), они не дают аллергических реакций.
    Диагностические сыворотки. Широко используются для определения антигенного состава возбудителей инфекционных заболеваний. Они позволяют окончательно определить вид (тип) микроба. В настоящее время вы¬пускают агглютинирующие, преципитирующие, вирус нейтрализующие, токсин нейтрализующие диагностические сыворотки.

    Агглютинирующие сыворотки используют для идентификации бактерий семейства кишечных (шигеллы, сальмонеллы, эшерихии), возбудителей дифтерии, бруцеллеза, лептоспироза и др. Они могут быть родовые, видовые, типовые, адсорбированные (монорецепторные) и неадсорбированные. Их готовят путем гипериммунизации животных, чаще кроликов, корпускулярным антигеном, который вводят внутривенно, реже внутрибрюшинно и подкожно в возрастающих количествах. Для получения больших количеств сывороток иммунизируют ослов, баранов, коз, лошадей. Существуют различные схемы иммунизации животных. После проверки титра антител животное обескровливают, сыворотку консервируют, добавляя 1—2% перекристаллизованной борной кислоты или мертиолатом (1 : 1000).

    Нативные сыворотки (родовые и видовые) используют для идентификации микробов в развернутой реакции агглютинации в пробирках. Адсорбированные сыворотки, содержащие антитела к 2—3 или более специфическим для данного вида антигенам (поливалентные), а также монорецепторные сыворотки, имеющие антитела только к одному антигену, используют для реакции агглютинации на стекле. Диагностические сыворотки выпускают в сухом или жидком виде. Срок годности жидких сывороток 1 год при хранении их в условиях температуры 4—10°С. Сухие сыворотки хранят до 3 лет и больше при комнатной температуре.

    Преципитирующие сыворотки используют в реакции преципитации при экспертизе определения чужеродных белков, в диагностике сибирской язвы (реакция преципитации по Асколи), типирования стрептококков, вирусов оспы, полиомиелита. Их готовят гипериммунизацией кроликов вакцинными штаммами бактерий и комплексами антигенов.

    Вирус- и токсиннейтрализующие сыворотки — нативные и очищенные по методу «Диаферм-3» — применяют при идентификации вирусов полиомиелита, энцефалитов, Коксаки, ECHO; для определения типа ботулинического токсина и перфрингенстоксина. Их получают, иммунизируя кроликов, лошадей, ослов внутривенно, подкожно или внутримышечно чистыми антигенами, сорбированными на гидроокиси алюминия, или анатоксинами клостридий ботулинус и перфрингенс.
    1   ...   6   7   8   9   10   11   12   13   14


    написать администратору сайта