|
магматизм. Документ Microsoft Word. Архейский срез Для решения проблемы происхождения архейской континентальной коры необходимо ответить на два фундаментальных вопроса
Архейский срез
Для решения проблемы происхождения архейской континентальной коры необходимо ответить на два фундаментальных вопроса:
1) каков ы были тектоническая обстановка и механизмы экстракции первичной коры из мантии и
2) посредством каких процессов эта примитивная кора была затем трансформирована в известную ныне континентальную кору.
Архейские зеленокаменные пояса являются наиболее ранними и хорошо сохранившимися блоками архейской континентальной коры и, таким образом, представляют собой наиболее перспективные объекты для решения указанных задач.
Расшифровка петрологических процессов и истории формирования архейской земной коры проведена на примере эволюции гнейс-зеленокаменных областей (ГЗО). До настоящего времени большинство исследователей рассматривают эти области как единый тип мегаструктур с присущим им единым стилем тектонического развития. Однако полученные нами данные свидетельствуют о значимых различиях в петрологических процессах и последовательности формирования ГЗО, что, вероятно, указывает на разные тектонические режимы их развития.
В Среднеприднепровской ГЗО установлена комплементарность процессов формирования антиклинорных гранито-гнейсовых блоков и смежных синклинорных зеленокаменных поясов, а также синхронность заложения последних на всей территории области. Около 3,20 млрд. лет назад происходило накопление самой ранней составляющей гнейсовых блоков – бимодальной базальт-дацитовой толщи и базальт-коматиитовых толщ низов разреза зеленокаменных поясов. 3,12–3,10 млрд. лет назад в бимодальные толщи гнейсовых блоков внедрялись небольшие интрузии гранитоидов, а в зеленокаменных поясах происходило накопление дацитриолитовых толщ и внедрение комагматичных им обрамляющих гранитоидных плутонов. Позже, 3,07–2,94 млрд. лет назад, породы гнейсовых блоков претерпели структурно-метаморфическую переработку и мигматизацию, а в смежных зеленокаменных поясах накапливались осадочные толщи. Петрогенетические реконструкции показывают, что исходные расплавы для кислых пород гнейсовых блоков и зеленокаменных поясов образовывались при частичном плавлении базитового субстрата, близкого по изотопно-геохимическим характеристикам к мантийному источнику базальт-коматиитовых расплавов, на глубинах до 30 км и в интервале глубин 40–60 км.
Возрастные соотношения и петрогенетические характеристики пород Среднеприднепровской ГЗО отвечают тектонической модели развития этой мегаструктуры на мощной (более 30 км) базитовой коре под воздействием системы малоглубинных конвекционных ячей, порожденных подъемом мантийного плюма (механизм плюмтектоники) (Самсонов и др., 1995).
Иная картина развития восстанавливается для Карельской ГЗО. Здесь вкрест простирания региональной структуры с востока на запад устанавливается последовательное омоложение вулканитов зеленокаменных поясов с 3,40 до 2,80 млрд. лет. Накопление супракрустальных толщ отдельных зеленокаменных поясов было сравнительно быстрым (менее 100 млн. лет).
Источником базальт-коматиитовых расплавов служила сильно деплетированная мантия, в то время как кислые расплавы генерировались за счет смешанных мантийных и кислых коровых источников. Имеющиеся данные предполагают формирование Карельской ГЗО в ходе латеральной аккреции разновозрастных зеленокаменных поясов с их гранитоидным обрамлением, что имеет ряд аналогий с механизмом роста современной континентальной коры в островодужных системах (механизм плейтектоники).
Мы предполагаем, что при формировании зеленокаменных поясов Карельской гранит-зеленокаменной области определяющую роль играли два процесса:
1) аккреция океанического плато, сформированного над обширным мантийным плюмом, и
2) аккреция океанической островной дуги в зоне субдукции, близкой по типу к Марианской.
Типичным представителем фрагмента океанического плато, обдуцированного на блок ранней континентальной коры, является Костомукшский зеленокаменный пояс (рис. 2). Установлено, что он состоит из двух тектонически совмещенных блоков: основного-ультраосновного и осадочного. Sm-Nd изотопный возраст коматиитов и базальтов равен 2843±39 млн. лет и близок к U-Pb возрасту цирконов из прорывающих пояс риолитов 2795±29 млн. лет. Коматииты и базальты выявляют геохимические особенности, близкие к таковым в наиболее примитивных вулканитах современных океанических плато (положительные величины Nd(T) = +3, обедненность сильно несовместимыми элементами Th, LREE, положительные Nb – аномалии) и коренным образом отличающиеся от океанических и континентальных островодужных вулканитов. Расчеты показали, что изученные коматииты сформировались из расплавов с температурой порядка 1550 °С, что отвечает температуре в области магмогенерации около 1770 °С. Согласно данным Маккензи и Бикля (1988), при плавлении мантии со столь высокой температурой формируется океаническая кора мощностью около 50 км, которая из-за избыточной плавучести не может быть субдуцирована. Блок этой коры, по-видимому, при попытке субдукции был обдуцирован на древнюю континентальную конвергентную окраину и таким образом превратился в новый фрагмент континентальной коры. Мы полагаем, что Костомукшский зеленокаменный пояс был сформирован в тектонической обстановке, типичной для архейских гранит-зеленокаменных областей.
Обзор данных по изученным и другим ГЗО показывает, что возможная смена плюмтектонического режима развития раннеархейских областей (около 3,5 млрд. лет: блок Пилбара, Западная Австралия; Капваальский кратон, Южная Африка) на плейтектонические режимы формирования позднеархейских областей (3,0–2,7 млрд. лет: блок Иилгарн, Западная Австралия; Канадский кратон) происходила постепенно в течение среднего архея.
Протерозойский срез
Бураковский интрузив в юго-восточной части Балтийского щита является крупнейшим раннепротерозойским (2,45 млрд. лет) расслоенным интрузивом основных и ультраосновных пород в России. Его площадь достигает 630 км2, мощность 4–6 км, объем извергнутого расплава – порядка 3200 км3 (рис. 3).
В массиве выделяются Расслоенная и Краевая серии. В разрезе Расслоенной серии устанавливается 5 зон (снизу вверх): Ультраосновная (3–3,5 км мощностью); Пироксенитовая (100–200 м); Габброноритовая (1100 м), подразделяемая на нижнюю – Полосчатую – с единичными прослоями ультрабазитов, и Верхнюю подзоны; Пижонитовых габброноритов (1200 м) и Феррогаббронорит-диоритов (760 м). Массив имеет автономную внутреннюю структуру, характеризующуюся пологим залеганием образований Расслоенной серии и умеренно-крутым, согласным с контактами – Краевой группы.
Для интрузива характерно наличие разнообразного оруденения. Он перспективен на ряд полезных ископаемых, включая Cr, Mg, Ni, Ti, V, PGE и, возможно, Au. Выделяются два типа сингенетической PGE минерализации. Первый связан с их накоплением при формировании хромититовых горизонтов; особенностью Бураковского массива является преобладание в Главном Хромитовом горизонте тугоплавких платиноидов (Os, Rh, Ir). Отношение Os+Rh+Ir/Pt+Pd = 2, Pt/Pd = 0,2–0,4. Сходный тип оруденения наблюдался только в некоторых хромитовых горизонтах Бушвельда и Стиллуотера. Второй тип – обычная для расслоенных интрузивов малосульфидная платиново-палладиевая минерализация стиллуотерского типа – приурочен к Пироксенитовой зоне и Полосчатой подзоне Габброноритовой зоны. Здесь отношение Pt/Pd = 0,2–0,9 при содержании платиноидов до 2–5 г./т. Важной особенностью этой минерализации является то, что платиновые металлы образуют соединения с разнообразными лигандами – это висмутотеллуриды, соединения со свинцом и оловом, селеном и серой. Характерны широкие вариации составов с большим набором примесей, особенно устойчивых по всему изученному разрезу повышенных концентраций ртути и селена.
Имеющиеся данные о наличии ультрабазитовых маркирующих горизонтов среди габброидов, обратной зональности в плагиоклазах и двух компактных максимумов составов пироксенов, различия в характере платинометальной минерализации, очевидно, свидетельствуют о том, что формирование интрузива происходило за счет неоднократного внедрения новых порций расплава в кристаллизующуюся камеру. Об этом же свидетельствует также характер распределения РЗЭ в породах ультраосновной и габброидной частей разрезов, указывающий на невозможность происхождения габброидов за счет дифференциации магмы, сформировавшей ультраосновную зону (рис. 4). Таким образом, здесь можно выделить по крайней мере два типа (группы) магм – ультрамафитовую и обогащенную глиноземом мафитовую, характерных для раннепротерозойской кремнеземистой высокомагнезиальной (бонинитоподобной) серии. Судя по изотопным данным, в формировании базитовых расплавов существенную роль играли породы нижней коры.
Интересно, что двум типам магм, образовавшимся в камере интрузива, соответствуют два типа магматических зон (серий): ультраосновная и основная. Первая (нижняя) по характеру оруденения, связанного с тугоплавкими платиноидами Главного хромитового горизонта, весьма напоминает оруденение классического плутона Бушвельд. Вторая (верхняя) содержит платиново-палладиевое оруденение, связанное с бедной сульфидной вкрапленностью, близкое к типу массива Стиллуотер. Таким образом, в одном Бураковском массиве совмещаются как бы два типа рудообразования, характерных для двух различных и весьма удаленных интрузивов (Ю. Африка и Сев. Америка).
Бураковский интрузив является типичным магматическим образованием кратонной стадии (2,5–2,2 млрд. лет назад). К этому времени земная кора повсеместно стабилизировалась, и типичный для раннего докембрия тип плюмтектоники продолжился в условиях консолидированной литосферы. Это привело к широкому распространению роев даек и крупных расслоенных интрузивов на всех докембрийских щитах (их около 30 только на Балтийском щите; в том числе Мончегорский, Панских-Федоровых тундр, Луккулайсваара, Бураковский и др.) и к смене типа магматической активности – от коматиит-базальтовых серий архея к бонинитоподобным сериям палеопротерозоя.
В 150–200 км к северу от Бураковского интрузива расположен пояс раннепротерозойских вулканитов – так называемый Ветреный пояс. Это бесполевошпатовые высокотитанистые эффузивы, близкие к пикритам, которые имеют идентичный с Бураковским массивом возраст (2,4 млрд. лет) и очень близкие показатели по изотопии , в частности, по величине отрицательного Nd и распределению редких земель (Пухтель и др., 1995).
Сходство геологической позиции, возраста и изотопно-геохимических показателей эффузивов Ветреного пояса и Бураковского массива позволяют уверенно говорить о происхождении их родоначальных магм из мантии одинакового состава и одинаковой последующей эволюции, включая контаминацию коровым материалом. Таким образом, валовый состав и геохимия лавовых пород Ветреного пояса демонстрируют нам состав магмы Бураковского массива до ее внутрикамерной дифференциации и расщепления на кальциевую основную ветвь и ветвь ультраосновную.
Мезозойский срез
Идея коррелятивной связи магматизма и геодинамики и соответствующий методический подход дали оригинальные и важные результаты при изучении калиевой ветви ультраосновного магматизма Алданского щита в юре и раннем мелу.
На приведена диаграмма Nd–87Sr/86Sr для мировых типов ультракалиевых магматитов и для таковых Центрально-Алданского региона. На диаграмме нанесены поля составов ультракалиевых и калиевых пород с одной стороны Италии, Африки, Западной Австралии, с другой – палеозойских и мезозойских вулканитов и плутонитов Алдана и кайнозойских пород Запада США.
Эти две группы пород образуют два различных петро-геохимических тренда. Первый отличается пологим наклоном, отражающим главное увеличение стронциевого отношения и в конечном счете существенное обогащение им. Величина Nd возрастает от нейтральной нулевой до –16. Максимальные величины стронция и неодима отвечают аномальной мантии (EMII), являвшейся источником соответствующих расплавов.
Второй тренд, охватывающий поля составов пород Запада США (кайнозой), Ц. Алдана (мезозой) и палеозойского массива Сакун, имеет более крутой наклон и величина eNd в нем достигает необычно низкого отрицательного значения –28. В то же время стронциевые отношения не превышают величину 0,704–0,709. Эти породы являются дериватами мантийного источника ЕMI. Составы со столь низкими величинами Nd не обнаружены нигде среди коровых магматических пород континентов, поэтому модель корового обогащения и изменения геохимического профиля данных пород недостаточна для объяснения их специфики. Ее надо связывать исключительно с обогащением самой мантии ЕMI, послужившей источником щелочных магматитов, например, вследствие процессов мантийного метасоматоза.
Когда возникла аномальная мантия ЕMI и, следовательно, источник мезозойских калиевых пород Центрального Алдана? Расчет модельного возраста, который позволяет оценить время формирования регионального мантийного источника, показал величину 2,4 млрд. лет. Докембрийский возраст источника подтверждают также значительные отрицательные величины Nd, высокие концентрации бария и его отношения к La и Rb.
Видимо, это тот временной интервал, когда могла происходить метасоматическая переработка мантии в исследуемом регионе, сопровождавшаяся обогащением ее LILE компонентами (K, Ba, Rb, Cs). Как раз для этого интервала докембрийской истории Алданского щита отмечались эпохи термотектогенеза, связанных с воздействием на земную кору глубинных тепловых и флюидных потоков. Возможно, термотектогенез в земной коре взаимосвязан с мантийным метасоматозом, ответственным за формирование источников калиевых магм. Это разноглубинные явления изменения древней литосферы в раннем протерозое.
Но возраст самого калиевого магматизма Ц. Алдана фиксирован очень точно в интервале 160–120 млн. лет (J1–K1), в том числе и изохронным Rb-Sr методом (Кононова и др., 1994).
Таким образом, при любых допустимых погрешностях в датировке магматических событий несомненным и обязательным становится вывод о двух этапах, ответственных за специфику калиевого магматизма в регионе. Первый этап (докембрийский) – подготовка субстрата в виде особой разновидности обогащенной мантии. Второй этап (мезозойский) – возникновение магматического очага и образование плутонитов и вулканитов специфического состава. Интервал между ними определяется в 1,5–2,0 млрд. лет.
Какие процессы могут нести ответственность за оба события? Высокие концентрации K, Ba, Rb, Cs в обогащенной мантии свидетельствуют о коровом происхождении метасоматических флюидов. Механизм поступления их в мантийные глубины, видимо, связан с процессами субдукции (Кононова и др., 1995).
Выше отмечалось некоторое сходство зеленокаменных поясов Карелии и их размещения в пространстве с островными дугами. М.З. Глуховский (1990) отмечает наличие таких же «трогов» – островных дуг, обрамляющих Ц. Алдан с запада и юга. Он допускает при этом, что на границе их с сиалическими ядрами могли возникать условия, сходные с тектогенезом в зонах субдукции или коллизий. По данным глубинной сейсмотомографии установлено, что Центральный Алдан со всех сторон ограничивается открытыми коро-мантийными разломами, которые образуют тектоносферную воронку. Эти «наклонные палеозоны» по В.А. Абрамову (1993) напоминают зоны Беньофа, по которым и проходило, видимо, затягивание, субдукция корового материала в мантийные глубины.
Исследования показали, что по распределению REE и некогерентных элементов калиевые основные и ультраосновные породы различных регионов тяготеют к различным вулканическим дугам. При этом породы Ц. Алдана более соответствуют вулканитам окраинно-континентальных дуг, а Италии и Индонезии – породам постколлизионных дуг.
В мезозое зона субдукции располагалась в 500–600 км от ареала калиевого магматизма в Центральном Алдане, в зоне сближения Амурского блока с юго-западной частью Сибирской платформы. В конце раннего мела это сближение завершилось коллизией. По-видимому, несколько импульсов сжатия и локального растяжения имели место в связи с этими геодинамическими процессами и в Ц. Алдане как форма отраженной активизации. Образовавшиеся при этом разломы открывались на различных глубинах, доставляя к поверхности разные по составу щелочные расплавы.
Разность источников для магм кайнозоя Запада США и Ц. Алдана с одной стороны и для Африки, Италии, Зап. Австралии с другой свидетельствует о латеральной неоднородности верхней мантии, установленной петрологическими исследованиями.
Кайнозойский срез
Исследования связи магматизма и геодинамики на новейшем отрезке геологической истории приобретают еще один важный аспект – раскрывают связь магматизма с природной средой и открывают возможности экологического прогноза в этой области.
Территория развития кайнозойских платобазальтов Сирии расположена на северо-востоке Красноморской рифтовой области и характеризуется двумя уникальными геологическими структурами: внутриплитной складчатой зоной Пальмирид и континентальным Левантским (Мертвого моря) трансформным разломом, прослеживающимся от залива Акаба Красного моря до складчатых сооружений Тавра. Развитые здесь базальты на юге, с одной стороны, входят в состав огромного Сирийско-Иорданского лавового плато, а с другой – приурочены к трансформному разлому. Они являются типичными внутриплитными образованиями, характерными для мантийных плюмов (горячих точек).
Магматическая активность в регионе началась в раннем миоцене, 25 млн. лет назад, одновременно с раскрытием Красного моря, и продолжается практически до сих пор – последние извержения здесь наблюдались около 300 лет назад. Проведенное изучение показало, что здесь происходит активное механическое взаимодействие астеносферного диапира с земной корой, причем последняя отнюдь не является пассивным участником процесса. Так, например, формирование Пальмирид, обусловленное деформациями земной коры Аравийской плиты в процессе ее движения на север, привело к прекращению вулканизма на участке их развития и его резкому усилению к северу и югу от него. Очевидно, это связано с погружением корней структуры Пальмирид в кровлю астеносферы и прекращением здесь магмообразования. По мере развития Пальмирид происходило постепенное перетекание астеносферного вещества к северу и востоку от Пальмирид, обеспечивших миграцию магматической активности на север и на восток. К югу от Пальмирид такой перестройки рельефа кровли астеносферы не происходило, и извержения здесь с небольшими перерывами продолжались на протяжение 20 млн. лет.
|
|
|