Главная страница

нейрофизиология. Человеческий мозг От аксона до нейрона_Айзек Азимов_2003. Азимов Айзек А35 Человеческий мозг. От аксона до нейрона Пер с англ. А. Н. Анваера. М. Зао центрполиграф, 2003. 461 с. Isbn 5952404707 Из этой замечательной книги вы узнаете о строении и тайнах центральной нервной системы человека,


Скачать 1.47 Mb.
НазваниеАзимов Айзек А35 Человеческий мозг. От аксона до нейрона Пер с англ. А. Н. Анваера. М. Зао центрполиграф, 2003. 461 с. Isbn 5952404707 Из этой замечательной книги вы узнаете о строении и тайнах центральной нервной системы человека,
Анкорнейрофизиология
Дата07.12.2020
Размер1.47 Mb.
Формат файлаdoc
Имя файлаЧеловеческий мозг От аксона до нейрона_Айзек Азимов_2003.doc
ТипРеферат
#157813
страница17 из 48
1   ...   13   14   15   16   17   18   19   20   ...   48

ГОНАДОТРОПИНЫ



Так же как кортикоиды и тироксин, половые гормоны выделяются в тесном взаимодействии с гипофизом. Это очень легко показать в эксперименте, так как удаление гипофиза приводит к атрофии половых желез, невозможности забеременеть или к прерыванию беременности, если она наступила до удаления гипофиза. Кроме того, если у животного имеет место лактация, то прекращается и она.

Совсем не удивительно, что из передней доли гипофиза удалось выделить несколько гормонов, которые влияют на половое развитие. Каждый гормон выполняет свою специфическую функцию, все они объединены (вместе с веществами, имеющими сходную функцию, но вырабатываемыми другими органами) под общим названием гонадотропины («питающие половые железы», греч.). Один из этих гонадотропонов замечателен тем, что стимулирует рост и развитие фолликула, готовя его к созреванию яйцеклетки. Этот гормон, естественно, был назван фолликулостимулирующим гормоном, сокращенно ФСГ. Не думайте, однако, что этот гормон функционирует только у женщин. У самцов мужчин он стимулирует рост эпителиальных клеток определенного участка яичек, который вырабатывает сперматозоиды.

Второй гормон начинает работать, когда заканчивается действие ФСГ. У женщин этот гормон стимулирует финальную стадию созревания фолликула, его разрыв, высвобождение яйцеклетки и прекращение остатков фолликула в желтое тело. По этой причине (надеюсь, вы помните, как на латинском языке называется желтое тело?) этот второй гормон был назван лютеинизирующим гормоном, сокращенно ЛГ. У мужчин этот гормон стимулирует деятельность клеток, вырабатывающих тестостерон. Эти клетки (так же как аналогичные клетки яичников, на которые этот гормон тоже действует) называются интерстициальными. По этой причине он имеет еще одно название - гормон, стимулирующий интерстициальные клетки.

Хотя второе название длиннее, оно предпочтительнее, так как могла возникнуть терминологическая путаница с третьим гипофизарным гонадотропином, который берет на себя функции второго из рассмотренных гормонов, поддерживая существование уже образованного желтого тела и стимулируя выработку прогестерона. Этот третий гормон называется лютеотропным гормоном. Он функционирует после окончания беременности в тесном взаимодействии с эстрогенами, стимулируя рост молочных желез и лактацию. Эта функция была выявлена раньше, чем воздействие на желтое тело. Старое наименование гормона - лактогенный гормон («продуцирующий молоко», греч.), или пролактин («перед лактацией», лат.).

Стимулирует пролактин и другие стороны жизнедеятельности, связанные с послеродовым периодом. Если молодым самкам крыс вводить пролактин, то они начинают заниматься обустройством гнезда, даже если у их нет потомства. С другой стороны, если мышам удалить гипофиз накануне родов, то такие самки не проявляют никакого интереса к своим мышатам. Газеты когда-то окрестили пролактин гормоном материнской любви.

Взаимодействие между эстрогенами (или андрогенами) и различными половыми гормонами имеет чрезвычайно сложную природу. Управляющие этим взаимодействием прямые и обратные связи пока до конца не выяснены. В целом выработка гонадотропинов стимулируется низким содержанием в крови половых гормонов и подавляется высокими их концентрациями.

Более выраженное воздействие на выработку пролактина оказывает сосание. Это усиливает выработку пролактина, а следовательно, и молока. Несомненно, те случайные сообщения о том, что у коров лактация увеличивается, если в коровнике играет тихая приятная музыка, могут иметь под собой основания, так как стимуляция секреции пролактина происходит в обстановке, которая придаст животному чувство благополучия и безопасности.

При таком тесном взаимодействии гипофиза и половых желез не удивительно, что недостаточность гипофиза приводит к такому же эффекту, как кастрация самцов или удаление яичников у самок. Гипофизарная недостаточность у молодых проявляется карликовостыо, ожирением и остановкой полового созревания. Эти симптомы были описаны в 1901 году австрийским неврологом Альфредом Фрелихом и с тех пор получили название синдрома Фрелиха. (Слово «синдром» составлено из греческих корней, означающих «бегущие вместе». Так обозначают совокупность симптомов, каждый из которых может затрагивать не связанные между собой органы, но встречаются они вместе, так сказать, «бегут одной группой».)

Из всех трех гипофизарных гонадотропинов только лактогенный гормон был выделен в относительно чистом виде. Все гонадотропные гормоны, естественно, являются белками (гипофиз вырабатывает только белки) с молекулярным весом от 20 000 до 100 000. Препараты ФСТ и Л Г, как выяснилось при их анализе, содержат сахар, но насколько это важно для их функциональной активности, пока не ясно.

Плацента вырабатывает собственный гонадотропин, который несколько отличается от гонадотропинов гипофиза. Этот гормон называется хорионическим гонадотропином человека, сокращенно XГ («Хорион» - греческое название оболочек плода.) Уже па второй - четвертой неделе беременности ХГ продуцируется в количествах, достаточных для того, чтобы надежно прикрепить плаценту к стенке матки. Небольшая часть ХГ экскретируется с мочой. Выделение ХГ с мочой достигает пика на втором месяце беременности.

ХГ способен воспроизводить у экспериментальных животных некоторые эффекты гипофизарных гопадотропинов. Если введение экстракта мочи женщины вызывает такое действие па крыс, мышей или лягушек, то ясно, что в моче содержится много ХГ и, значит, у женщины имеет место беременность. На основе таких эффектов разработаны новые рутинные тесты на беременность, которые дают надежный ответ за несколько недель до того, как врач сможет выявить беременность с помощью несколько более грубых манипуляций.
Глава 6
НЕРВЫ

ЭЛЕКТРИЧЕСТВО И ИОНЫ
В пяти первых главах этой книги я описал механизм, с помощью которого сложная жизнедеятельность организма координируется и упорядочивается путем выработки и распада крупных и мелких молекул, которые иногда работают согласованно, а иногда противодействуя друг другу, ради достижения какого-либо эффекта (хотя это не всегда определен но ясно), который реализуется изменением свойств клеточных мембран, взаимодействующих с этими молекулами. Такая форма координации, присутствующая во всех организмах с момента зарождения жизни, очень полезна и практична, но имеет один недостаток - она работает слишком медленно. Гормональное воздействие должно ждать, пока произойдет сборка нужной молекулы, пока сложатся друг другом необходимые для этого атомы. После этого продукт реакции выделяется в кровь и доставляется во все уголки организма, хотя подействует он, быть может, только в одном-единственном месте. Когда же миссия гормона заканчивается, он распадается и теряет активность, а его остатки фильтруются в мочу и удаляются из организма ночками.

Есть, однако, еще одна система координации деятельности организма, которая имеет перед гормональной системой неоспоримое преимущество в точности, эффективности и скорости передачи информации. Для своей работы эта система не требует больших и сложных молекул, в ней действуют атомы и частицы намного меньшие, чем атомы. Эти атомы и частицы движутся не по кровеносным сосудам, а по специальным каналам со скоростями большими, чем скорость, с которой вязкая кровь может продвигаться по топким кровеносным капиллярам. Более того, эти каналы идут от определенных органов или, наоборот, к ним, передавая электрический по природе сигнал точно по адресу, не распыляясь по всему телу и не оказывая побочных действий, столь характерных для гормонов.

Разница в интенсивности жизненных процессов у растений и животных по большей части обусловлена именно тем фактом, что животные, в дополнение к химической системе передачи сигналов, обладают системой передачи электрических сигналов, а растения - только химической. Давайте, однако, начнем сначала.

Когда анатом вскрывает тело животного, то в разных местах он обнаруживает тонкие белые нити. Они выглядят как струны. Слово «нерв», которым обозначают эти структуры, происходит от санскритского слова «снавара», что и означает «струна» или «шнур». Действительно, поначалу этот термин применяли для обозначения любой структуры тела, похожей па струпу, например к сухожилиям. Кстати, сначала именно сухожилия, которыми мышцы прикрепляются к костям, и называли нервами.

Александрийские греки во времена Юлия Цезаря поняли разницу - сухожилия представляли собой прочные соединительные волокна, но были другие струны, более хрупкие и жироподобные по строению. Одним концом эти струны, как и сухожилия, прикреплялись к мышцам, но, в отличие от сухожилий, другой конец этих топких струп не направлялся к костям. Гален, римский врач, живший за двести лет до нашей эры, впервые применил термин «нерв» для описания именно этих не сухожильных волокон, и мы до сих пор следуем его примеру.

Тем не менее, следы старого употребления слова «нерв» преследуют нас па каждом шагу даже в настоящее время. Когда мы делаем какое-то очень большое усилие, то говорим, что у нас напряжены все нервы, хотя в данном случае имеем в виду сухожилия, которые действительно напряжены и натянуты сократившимися мышцами. Полный словарь английского языка дает в качестве первого значения слова «жилистый» слово «нервный». Сказать в наше время «нервическая рука» - значит иметь в виду слабую дрожащую руку, хотя в старые времена это могло значить «сильная рука».

В древности и в Средние века нервы считали полыми, как кровеносные сосуды, а их функцией, по мнению ученых того времени, был (как и для кровеносных сосудов) перенос жидкости. Для обоснования такого толкования функции нервов были разработаны весьма сложные теории. Среди авторов этих теорий был Гален и другие знаменитости. Они считали, что жидкости трех различны родов текут по венам, артериям и нервам соответственно Жидкость, текущую по нервам, называли животным духом и считали самой тонкой и разреженной из всех трех.

Эти теории действия нервов, лишенные наблюдательной базы, на которой можно было бы построить настоящую теорию, утонули в болоте невежества и мистицизма и в конечном счете были оставлены. Однако, как выяснилось, древние в чем-то все же попали в цель.

По нервам действительно течет некий флюид, флюид более эфирный по своей природе, нежели кровь, наполняющая сосуды, чем воздух, наполняющий легкие и переходящий в артерии. Действие этого флюида наблюдали за несколько столетий до Галена. В 600-е годы до новой эры греческий философ Фалес обнаружил, что если потереть янтарь материей, то он приобретает способность притягивать легкие предметы. Ученые обращались к этому феномену не раз па протяжение столетий, назвали его электричеством (от греческого слова «электрон», что означает «янтарь»), но, находя его весьма интересным, так и не поняли его природу.

В XVIII веке был найден способ накапливать электричество с помощью прибора, называемого лейденской банкой. (Этот прибор особенно интенсивно изучали в университете голландского города Лейдена.) Когда лейденская банка была полностью заряжена, ее можно было разрядить, если прикоснуться к металлическому шарику па ее верхней части. Электричество отскакивало от этого набалдашника в виде искры, очень похожей на молнию. При этом раздавался и треск, напоминавший пародию на гром. Люди начали думать об электричестве как о жидкости, которая вливается в лейденскую банку, а потом изливается оттуда.

Американский ученый Бенджамин Франклин первым популяризовал представления об электричестве как о жидкости особого рода, которая может образовывать электрические заряды двух различных типов, в зависимости оттого, присутствует ли избыток (положительный заряд) жидкости или ее недостаток (отрицательный заряд). Более того, Франклин в 1752 году смог показать, что искры и треск лейденской банки не просто напоминают гром и молнию, но представляют собой то же самое природное явление. Запуская воздушного змея во время грозы и присоединяя его к банке, он сумел зарядить ее электричеством.

Открытие взволновало научный мир, и ученые начали ставить над электричеством опыт за опытом. Итальянский анатом Луиджи Гальвани в 80-х годах XVIII века тоже занялся электричеством. Он, также как и другие, обнаружил, что если воздействовать электрическим разрядом лейденской банки па изолированную мышцу, иссеченную из лапки лягушки, то эта мышца сократится. Однако он пошел дальше и открыл еще один феномен (правда, отчасти благодаря счастливому случаю). Он обнаружил, что мышца сократится, если к пей прикоснуться металлическим предметом в тот момент, когда разряжается лейденская банка. При этом было совершенно не обязательно, чтобы искра коснулась мышцы. Потом Гальвани открыл, что мышца сокращается, если к ней прикоснуться двумя предметами из разных металлов. Это происходит даже в том случае, если поблизости вообще нет никакой лейденской банки.

Гальвани решил, что мышца сама по себе является источником флюида, похожего па электричество, с которым экспериментировали другие ученые. Он назвал новый, по его мнению, вид электричества «животным электричеством». Ученые быстро показали, что Гальвани был настолько же не прав в своих выводах, насколько тонок в своих наблюдениях.

Соотечественник Гальвани Алессандро Вольт в начале XIX века показал, что источником электричества была не мышца, а два металла. Он особым образом соединял между собой две полоски металлов и получал - при отсутствии животных тканей - электрический ток. Он первым сконструировал электрическую батарею и получил постоянный ток.

Оказалось, что электрический ток обладает свойством стимулировать животные ткани. Вскоре было показано, что, хотя ток может вызвать сокращение мышцы при непосредственном воздействии на нее, Гон гораздо аффективнее делает это, если его приложить к нерву, идущему к возбуждаемой мышце. В течение XIX века постепенно утвердилось мнение, что нерп проводит стимул к мышце и что это проведение осуществляется в форме электрического тока.

Природа возникновения тока в молнии, батарее Вольта и в нерве не была понята до открытия строения атома в начале XX века. На пороге этого века было выяснено, что атом состоит из множества более мелких, субатомных частиц, большинство из которых несет электрический заряд. В особенности это касается внешней области атома, той области, в которой вращаются вокруг атомного ядра электроны, несущие заряд, который Франклин когда-то, совершенно произвольно, описал как отрицательный. В центре атома находится атомное ядро, которое несет положительный заряд, уравновешивающий отрицательный заряд электронов. Если рассматривать атом как единое целое, то два типа электрических зарядов уравновешивают друг друга, и в целом атом является электрически нейтральным.

Однако атомы взаимодействуют друг с другом и обладают склонностью отбирать друг у друга электроны. В любом случае, теряет ли атом электрон или приобретает его, нарушается равновесие зарядов и атом перестает быть электрически нейтральным. Атом приобретает заряд и превращается в ион. Электроны перетекают с одного набора атомов к другим, подобно флюиду Франклина, за исключением того, что Франклин направил этот поток в противоположном, неверном, направлении (но пусть это не тревожит нас).

Атомы натрия и калия очень легко отдают по одному электрону. В результате образуются ионы калия и натрия, каждый из которых песет единичный положительный заряд. Напротив, атомы элемента хлор охотно присоединяют один электрон к своей внешней электронной оболочке, становясь при этом отрицательно заряженными ионами хлора1.
1 В оригинале сноска касается тонкостей англоязычной терминологии, не играющих роли в русском языке Имеется» виду, что не надо путать ион хлора с ионом хлорном кислот (Примеч. пер.).
В организме содержится очень много натрия, калия и хлора, но все эти элементы неизменно присутствуют в нем в виде своих ионов2.
2 В действительности натрий и калий существуют в неживой природе тоже только в виде ионов. Нейтральные атомы натрия и калия образуют очень активные металлы, которые можно получить только и лабораторных условиях, приложив немало усилий. Если после этого не предпринять специальных мер, то атомы этих металлов немедленно прекращаются в ионы. То же самое можно сказать и о хлоре, атомы которого в тральной форме объединяются в пары и образуют ядовитый газ «хлор», который в свободном виде на Земле не встречается, за исключением лабораторий, где его изготовляют химики.
Кроме того, в организме содержится множество других ионов. Кальций и магний существуют в нашем теле в виде тонов, несущих двойной положительный заряд. Атомы железа образуют ионы, которые имеют либо двойной, либо тройной положительный заряд. Атомы серый фосфора соединяются кислородом и водородом, образуя сложные ионы, несущие суммарный отрицательный заряд. Группы атомов, образующие боковые цени аминокислот, из которых построены белки, в некоторых случаях присоединяют электроны, а в некоторых - отдают (иногда, правда, они не делают ни того ни другого), в результате по поверхности белковой молекулы рассеяны положительно и отрицательно заряженные группы.

Положительно заряженные частицы отталкивают другие положительно заряженные частицы, а отрицательно заряженные частицы отталкивают другие отрицательно заряженные частицы. Напротив, положительно заряженные и отрицательно заряженные частицы притягиваются друг к другу. Силы притяжения и отталкивания приводят к тому, что в растворе заряды существуют в виде равномерной смеси. В любом объеме разумных размеров (например, в объеме, видимом в световом микроскопе) все заряды нейтрализованы, так как положительные и отрицательные заряды сближаются на минимально возможное расстояние и нейтрализуют друг друга. Требуется весьма значительная энергия для того, чтобы разделить даже небольшое количество разноименных зарядов, а когда заряды разделены, они снова стремятся образовать нейтральную смесь. Это может иметь катастрофический характер, например при разряде молнии, или выглядеть скромнее, как разрад обкладок лейденской банки. В химической батарее разделены очень небольшие заряды. Это разделение всегда существует в металлах. Электрический ток - это попытка электронов течь из одного металла в другой, чтобы восстановить нейтральность.

Если по нервам течет электрический ток какой бы то ни было природы, то, значит, есть и разделение зарядов. Ответ на вопрос о природе такого разделения скрыт в строении клеточной мембраны.

1   ...   13   14   15   16   17   18   19   20   ...   48


написать администратору сайта