Главная страница
Навигация по странице:

  • Гипергликемические состояния.

  • Гипогликемические состояния.

  • Сахарные нагрузки и сахарные кривые

  • Переваривание липидов

  • Р есинтез липидов в энтероцитах.

  • Р есинтез эфиров холестерола

  • Р есинтез триацилглицеролов.

  • Ответы на билеты биохимия 2012. Белок это последовательность ак, связанных друг с другом пептидными связями


    Скачать 5.15 Mb.
    НазваниеБелок это последовательность ак, связанных друг с другом пептидными связями
    АнкорОтветы на билеты биохимия 2012.doc
    Дата28.01.2017
    Размер5.15 Mb.
    Формат файлаdoc
    Имя файлаОтветы на билеты биохимия 2012.doc
    ТипДокументы
    #60
    КатегорияБиология. Ветеринария. Сельское хозяйство
    страница10 из 29
    1   ...   6   7   8   9   10   11   12   13   ...   29


    Регуляция: Нервная регуляция концентрации глюкозы в крови выражается в положительном влиянии n.vagus на секрецию инсулина и тормозящем влиянии на этот процесс симпатической иннервации. Кроме этого, выделение адреналина в кровь подвержено симпатическим влияниям.

    Основными факторами гормональной регуляции являются глюкагон, адреналин, глюкокортикоиды, соматотропный гормон с одной стороны, и инсулин с другой. Все гормоны, кроме инсулина, влияя на печень, увеличивают гликемию. Инсулин является единственным гормоном ор-ма, действие которого нацелено на снижение уровня глюкозы крови. При его влиянии глюкозу усиленно поглощают мышцы и жировая ткань. Уменьшение конц-ии глюкозы в крови инсулином достигается следующими путями:

    -переход глюкозы в клетки – активация белков-транспортеров ГлюТ 4 на цитоплазматической мембране,

    -вовлечение глюкозы в гликолиз – повышение синтеза глюкокиназы – фермента, получившего название "ловушка для глюкозы", стимуляция синтеза других ключевых ферментов гликолиза – фосфофруктокиназы, пируваткиназы,

    -увеличение синтеза гликогена – активация гликогенсинтазы и стимуляция ее синтеза, что облегчает превращение излишков глюкозы в гликоген,

    -активация пентозофосфатного пути – индукция синтеза глюкозо-6-фосфат-дегидрогеназы и 6-фосфоглюконатдегидрогеназы,

    -усиление липогенеза – вовлечение глюкозы в синтез триацилглицеролов или фосфолипидов.

    Многие ткани совершенно нечувствительны к действию инсулина, их называют инсулиннезависимыми. К ним относятся нервная ткань, стекловидное тело, хрусталик, сетчатка, клубочковые клетки почек, эндотелиоциты, семенники и эритроциты. Глюкагон повышает содержание глюкозы крови:

    -увеличивая мобилизацию гликогена через активацию гликогенфосфорилазы,

    -стимулируя глюконеогенез – повышение работы ферментов пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-дифосфатазы.

    Адреналин вызывает гипергликемию:

    -активируя мобилизацию гликогена – стимуляция гликогенфосфорилазы,

    Глюкокортикоиды повышают глюкозу крови

    -за счет подавления перехода глюкозы в клетку,

    -стимулируя глюконеогенез – увеличивают синтез ферментов пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-дифосфатазы.

    Основные аспекты гормональных влияний:

    Снижение глюкозы крови Повышение глюкозы крови

    Инсулин Адреналин

    Повышение ГлюТ 4-зависимого тр-та глюкозы в кл Активация гликогенолиза в печени

    Усиление синтеза гликогена Глюкагон

    Активация ПФП Активация гликогенолиза в печени

    Активация гликолиза и ЦТК Стимуляция глюконеогенеза

    Глюкокортикоиды

    Усиление глюконеогенеза

    Уменьшение проницаемости мембран для глюкозы

    Гипергликемические состояния. Не представляют острой угрозы для жизни, но если уровень глюкозы от 16 до 22 ммоль/л сохраняется несколько дней, то глюкозы уходит из организма с мочой это влечет одновременную потерю воды и электроллитовприводит к прогрессирующей дегидратации и уменешению объёма крови, понижению кровяного давления, шоку, коме. Длительная гипергликемия – главная причина осложнений при сахарном диабете. Высокий уровень глюкозы вызывает неферментативное гликозилирование белков. В норме их 6%, при паталогии в 2-3 раза больше. Гликозилированные белки изменяют свою конформацию, поверхностный заряд, в следствии этого изменяются свойства белков и их взаимодействие с лигандами (гликозилированный гемоглобин имеет высокое сродство к О2, в рез-те О2 не поступает в кл, разв-ся гипоксия). Гипергликемическим является состояние, при котором концентрация глюкозы в крови более 6 ммоль/л. По происхождению выделяют две группы таких состояний:

    Физиологические 1)алиментарные – связаны с приемом пищи и продолжаются в норме не более 2 часов после еды. 2) нейрогенные – нервное напряжение, стимулирующее секрецию адреналина и мобилизацию гликогена в печени, 3) гипергликемия беременных – связана с относительной недостаточностью инсулина при увеличении массы тела и потребностью плода в глюкозе.

    Патологические 1)при заболеваниях гипофиза, коры и мозгового слоя надпочечников, щитовидной железы, связанных с избытком гликемических гормонов, 2)при органических поражениях ЦНС,

    поражении β-клеток поджелудочной железы.

    Гипогликемические состояния. Гипогликемия опасна для жизни. Если глюкоза снижается от 2,2 до 2,7 ммоль/л и остается таковой в течении 10 минут, это может привести к необратимому повреждению кл мозга., т.к. в кач-ве источника Е мозг исп-ет исключительно глюкозу (в обычных условиях) Гипогликемическим является состояние, при котором концентрация глюкозы в крови ниже 3,5 ммоль/л. Причиной гипогликемий может явиться:

    Физиологические краткое или долгосрочное голодание, малоуглеводная диета.

    Патологические 1)гиперинсулинизм в результате передозировки или инсулиномы (инсулинпродуцирующая опухоль) или избыточной активности инсулиназы (синдром Мак-Куорри),

    2) гликогенозы, 3) недостаток гликемических гормонов при гипопитуитаризме, аддисоновой болезни,

    4)у недоношенных и новорожденных – охлаждение, малые запасы гликогена в печени и ее общая незрелость, 5) нарушения кишечника, гельминтозы, дисбактериозы.

    Сахарные нагрузки и сахарные кривые используют для диагностики сахарного диабета. Обследуемому даётся р-р глюкозы из расчета 1гм на 1кг массы тела. Концентрацию глюкозы измеряют сначала на тощак, а потом в течении 2-3х часов с интервалом в 1ч. По результатам строятся сахарные кривые.

    21. Функции липидов. Пищевые жиры; норма суточного потребления, переваривание, всасывание продуктов переваривания. Ресинтез жиров в клетках кишечника. Хиломикроны, строение, значение, метаболизм. Пределы изменения концентрации жиров в крови.

    Липиды – органические вещества, характерные для живых организмов, нерастворимые в воде, но растворимые в органических растворителях и друг в друге.

    Классификация липидов организма человека

    1. Гликолипиды. Содержат углеводный компонент.

    2. Жиры. Эфиры глицерина и высших жирных кислот. Химическое название - ацилглицерины. Преобладают триацилглицерины.

    3. Минорные липиды. Свободные жирные кислоты, жирорастворимые витамины, биологически активные вещества липидной природы - простагландины и др.

    4. Стероиды. В основе строения - полициклическая структура циклопентанпергидрофенантрен-стеран.

    А. Стерины (спирты). Наиболее важен холестерин.

    В. Стериды. Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

    5. Фосфолипипы. Отличительная особенность - остаток фосфорной кислоты в составе молекулы.

    Группы липидов отличаются по степени гидрофобности. Фосфолипиды и гликолипиды являются полярными липидами.

    Холестерин занимает промежуточное положение между полярными и абсолютно гидрофобными липидами.

    Абсолютно гидрофобными являются триглицериды и эфиры холестерина.

    Большинство липидов (кроме стеринов и некоторых минорных липидов) содержат высшие жирные кислоты (ВЖК). В состав мембран входят только фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС).

    Функции:

    1. Резервно-энергетическая функция. Триацилглицеролы подкожного жира являются основным энергетическим резервом организма при голодании. В адипоцитах жиры могут составлять 65-85% веса. Для поперечно-полосатой мускулатуры, печени и почек они являются основным источником энергии. При расщеплении 1г жира обр-ся 9,3 кКал Е. Является резервом эндогенной воды (окисление 1г жира даёт 1,7г воды)

    2. Структурная функция. Мембраны клеток состоят из фосфолипидов, обязательным компонентом являются гликолипиды и холестерол. Основным компонентом сурфактанта легких является фосфатидилхолин. Т.к. активность мембранных ферментов зависит от состояния и текучести мембран, то жирнокислотный состав и наличие определенных видов фосфолипидов, количество холестерола влияет на активность мембранных липидзависимых ферментов (например, аденилатциклаза, Nа+,К+-АТФаза, цитохромоксидаза). Обеспечивают изберательную проницаемость, входят в состав рецепторов, определяют активный транспорт, образуют биопотенциалы.

    3. Сигнальная функция. Гликолипиды выполняют рецепторные функции и задачи взаимодействия с другими клетками. Фосфатидилинозитол непосредственно принимает участие в передаче гормональных сигналов в клетку. Производные жирных кислот – эйкозаноиды – являются "местными или тканевыми гормонами", обеспечивая регуляцию функций клеток.

    4. Защитная функция. Подкожный жир является хорошим термоизолирующим средством, наряду с брыжеечным жиром он обеспечивает механическую защиту внутренних органов. Фосфолипиды играют определенную роль в активации свертывающей системы крови. Сохранение тепла происходит благодаря низкой теплопроводности.

    5. Необходимы для растворения и всасывая жирорастворимых витаминов (А, Е, D, K, Q)

    6. Являются предшественниками других соединений: глицерин испол-ся на синтез глюкозы, жирные к-ты окисляются до ацетилКоА и могут быть использованы на образование ацетилхолина)

    7. Специфические функции: обеспечивают устойчивость эритроцитов, ганглиозиды связывают различные токсины и яды.

    С пищей в организм ежедневно поступает от 80 до 150 г липидов. Основную массу составляют жиры, наряду с глюкозой служащие главными источниками энергии. Хотя калорийность жиров значительно выше, чем углеводов (9 по сравнению с 4,7 ккал/моль), при рациональном питании жиры обеспечивают не более 30% от общего количества калорий, поступающих с пищей. Жидкие жиры (масла) содержат в своём составе полиеновые жирные кислоты, которые не синтезируются в организме; поэтому жидкие жиры должны составлять не менее одной трети жиров пищи. Потребность в липидах взрослого организма составляет 80-100 г в сутки, из них растительных (жидких) жиров должно быть не менее 30%. С пищей в основном поступают триацилглицеролы, фосфолипиды и эфиры ХС.

    Переваривание липидов осложняется тем, что их молекулы полностью или частично гидрофобны. Для преодоления этой помехи используется процесс эмульгирования, когда гидрофобные молекулы (ТАГ, эфиры ХС) или гидрофобные части молекул (ФЛ, ХС) погружаются внутрь мицеллы, а гидрофильные остаются на поверхности, обращенной к водной фазе. Условно внешний обмен липидов можно подразделить на следующие этапы:

    1. Эмульгирование жиров пищи – необходимо для того, чтобы ферменты ЖКТ смогли начать работу.

    2. Гидролиз триацилглицеролов, фосфолипидов и эфиров ХС под влиянием ферментов ЖКТ.

    3. Образование мицелл из продуктов переваривания (жирных кислот, МАГ, холестерола).

    4. Всасывание образованных мицелл в эпителий кишечника.

    5. Ресинтез триацилглицеролов, фосфолипидов и эфиров ХС в энтероцитах.

    После ресинтеза липидов в кишечнике они собираются в транспортные формы – хиломикроны (основные) и липопротеины высокой плотности (ЛПВП) (малое кол-во) – и разносятся по организму.

    Первые два этапа переваривания липидов, эмульгирование и гидролиз, происходят практически одновременно. Вместе с этим, продукты гидролиза не удаляются, а оставаясь в составе липидных капелек, облегчают дальнейшее эмульгирование и работу ферментов.

    Переваривание в ротовой полости. У взрослых в ротовой полости переваривание липидов не идет, хотя длительное пережевывание пищи способствует частичному эмульгированию жиров.

    Переваривание в желудке. Собственная липаза желудка у взрослого не играет существенной роли в переваривании липидов из-за ее небольшого количества и того, что ее оптимум рН 4,5-5,5. Также влияет отсутствие эмульгированных жиров в обычной пище (кроме молока). Тем не менее, у взрослых теплая среда и перистальтика желудка вызывает некоторое эмульгирование жиров. При этом даже низко активная липаза расщепляет незначительные количества жира, что важно для дальнейшего переваривания жиров в кишечнике, т.к. наличие хотя бы минимального количества свободных жирных кислот облегчает эмульгирование жиров в двенадцатиперстной кишке и стимулирует секрецию панкреатической липазы.

    Переваривание в кишечнике. Под влиянием перистальтики ЖКТ и составных компонентов желчи пищевой жир эмульгируется. Образующиеся лизофосфолипиды также являются хорошим поверхностно- активным веществом, поэтому они способствуют эмульгированию пищевых жиров и образованию мицелл. Размер капель такой жировой эмульсии не превышает 0,5 мкм. Гидролиз эфиров ХС осуществляет холестерол-эстераза панкреатического сока. Переваривание ТАГ в кишечнике осуществляется под воздействием панкреатической липазы с оптимумом рН 8,0-9,0. В кишечник она поступает в виде пролипазы, активируемой при участии колипазы. Колипаза, в свою очередь, активируется трипсином и затем образует с липазой комплекс в соотношении 1:1. Панкреатическая липаза отщепляет жирные кислоты, связанные с С1 и С3 атомами углерода глицерола. В результате ее работы остается 2-моноацилглицерол (2-МАГ). 2-МАГ всасываются или превращаются моноглицерол-изомеразой в 1-МАГ. Последний гидролизуется до глицерола и жирной кислоты. Примерно 3/4 ТАГ после гидролиза остаются в форме 2-МАГ и только 1/4 часть ТАГ гидролизуется полностью. В панкреатическом соке также имеется активируемая трипсином фосфолипаза А2, отщепляющая жирную кислоту от С2. Обнаружена активность фосфолипазы С и лизофосфолипазы. В кишечном соке имеется активность фосфолипазы А2 и С. Имеются также данные о наличии в других клетках организма фосфолипаз А1 и D.

    Образование мицелл. В результате воздействия на эмульгированные жиры ферментов панкреатического и кишечного соков образуются 2-моноацилглицеролы, жирные кислоты и свободный холестерол, формирующие структуры мицеллярного типа (размер около 5 нм). Свободный глицерол всасывается прямо в кровь.

    После расщепления полимерных липидных молекул полученные мономеры всасываются в верхнем отделе тонкого кишечника в начальные 100 см. В норме всасывается 98% пищевых липидов.

    1. Короткие жирные кислоты (не более 10 атомов углерода) всасываются и переходят в кровь без каких-либо особенных механизмов. Этот процесс важен для грудных детей, т.к. молоко содержит в основном коротко- и среднецепочечные жирные кислоты. Глицерол тоже всасывается напрямую.

    2. Другие продукты переваривания (жирные кислоты, холестерол, моноацилглицеролы) образуют с желчными кислотами мицеллы с гидрофильной поверхностью и гидрофобным ядром. Их размеры в 100 раз меньше самых мелких эмульгированных жировых капелек. Через водную фазу мицеллы мигрируют к щеточной каемке слизистой оболочки. Здесь мицеллы распадаются и липидные компоненты проникают внутрь клетки, после чего транспортируются в эндоплазматический ретикулум. Желчные кислоты частично также могут попадать в клетки и далее в кровь воротной вены, однако большая их часть остается в химусе и достигает подвздошной кишки, где всасывается при помощи активного транспорта.

    Ресинтез липидов в энтероцитах. После всасывания продуктов гидролиза жиров жирные кислоты и 2-моноацилглицеролы в клетках слизистой оболочки тонкого кишечника включаются в процесс ресинтеза с образованием триацилглицеролов. Жирные кислоты вступают в реакцию этерификации только в активной форме в виде производных коэнзима А, поэтому первая стадия ресинтеза жиров - реакция активации жирной кислоты:

    HS КоА + RCOOH + АТФ → R-CO

    КоА + АМФ + Н4Р2О7.

    Реакция катализируется ферментом ацил-КоА-синтетазой (тиокиназой). Затем ацилКоА участвует в реакции этерификации 2-моноацилглицерола с образованием сначала диацилгли-церола, а затем триацилглицерола. Реакции ресинтеза жиров катализируют ацилтранеферазы.Ресинтез липидов – это синтез липидов в стенке кишечника из поступающих сюда экзогенных жиров, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволит переносить по крови в ткани. Поступившая в энтероцит жирная кислота обязательно активируется через присоединение коэнзима А. Образовавшийся ацил-SКоА участвует в реакциях синтеза эфиров холестерола, триацилглицеролов и фосфолипидов.

    Ресинтез эфиров холестерола. Холестерол этерифицируется с использованием ацил-S-КоА и фермента ацил-КоА:холестерол-ацилтрансферазы (АХАТ). Реэтерификация холестерола напрямую влияет на его всасывание в кровь. В настоящее время ищутся возможности подавления этой реакции для снижения концентрации ХС в крови.

    Ресинтез триацилглицеролов. Для ресинтеза ТАГ есть два пути: Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ. Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется и глицерол в энтероцитах не задерживается, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы, так как пищевой глицерол быстро покидает энтероциты и уходит в кровь. Здесь можно выделить следующие реакции: 1. Образование глицерол-3-фосфата из глюкозы. 2.Превращение глицерол-3-фосфата в фосфатидную кислоту. 3.Превращение фосфатидной кислоты в 1,2-ДАГ. 3.Синтез ТАГ.
    1   ...   6   7   8   9   10   11   12   13   ...   29


    написать администратору сайта