радиация. Радиационная безопасность и способы защиты человека от нее. Бетаизлучение представляет собой поток электронов. Изза более низкой, чем у альфачастиц, ионизирующей способности могут преодолеть большее расстояние в веществе (23 см в биологической ткани). Гаммаизлучение
Скачать 46.24 Kb.
|
Введение. Ионизирующее излучение – это излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков, то есть к ионизации среды (см. рисунок 1). Такими свойствами обладают радиоактивные излучения, излучения высоких энергий, рентгеновские лучи и др. Видимый свет и ультрафиолетовое излучение не относят к ионизирующим излучениям. По виду частиц, входящих в состав ИИ, различают 3 основных вида радиоактивного излучения: Альфа-излучение – представляет собой поток альфа-частиц (ядер атомов гелия). Относятся к сильно ионизирующим частицам, быстро теряющим свою энергию при взаимодействии с атомами вещества. По этой причине альфа-излучение имеет маленькую проникающую способность (путь в веществе) и не способно проникнуть даже через слой обычной бумаги или кожу человека. Альфа-частицы опасны лишь при внутреннем облучении органов и тканей. Бета-излучение – представляет собой поток электронов. Из-за более низкой, чем у альфа-частиц, ионизирующей способности могут преодолеть большее расстояние в веществе (2-3 см. в биологической ткани). Гамма-излучение не состоит из частиц как альфа- и бета-излучения. Оно, так же как и свет Солнца, представляет собой электромагнитную волну, распространяющуюся со скоростью света. Ионизирующая способность гамма-излучения низка. Проникающая способность – самая большая (в биологических тканях гамма-кванты не задерживаются). Также существует нейтронное излучение, но о нем немного позже. Нейтронное излучение – это ядерное излучение, состоящее из потоков частиц с нейтральным зарядом (нейтронов). Проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом. Но важно отметить, что характер взаимодействия нейтронов со средой сильно зависит от энергии частиц. По этой причине нейтроны разделяют на группы в зависимости от их энергии. Основные из них это тепловые и быстрые нейтроны. При этом энергия быстрых нейтронов в миллиарды раз больше энергии тепловых нейтронов. Больше – значит лучше!? Но не в этом случае. Так, быстрые нейтроны, сталкиваясь со значительным количеством нуклонов (общее название для протонов и нейтронов в ядре), замедляются, а более медленные (тепловые) нейтроны, могут «спокойно» подойти к ядру и быть захваченными им, в результате происходит реакция превращения элемента. Именно эта реакция проложила дорогу к созданию ядерного реактора. В настоящее время тепловые нейтроны имеют большое значение не только для работы ядерных реакторов. Они широко используются для получения радиоактивных изотопов, изучения свойств ядер, структурного исследования кристаллов, исследования динамики атомов твердых тел, свойств молекул и т.д. Радиоактивность – это самопроизвольное превращение атомных ядер, сопровождающееся испусканием элементарных частиц или более лёгких ядер. Ядра, подверженные таким превращениям, называют радиоактивными, а процесс превращения – радиоактивным распадом. Радиоактивность - не новое явление. Оно существовало во Вселенной всегда. Радиоактивные материалы входят в состав Земли, и даже человек слегка радиоактивен, т.к. в любой живой ткани присутствуют в малейших количествах радиоактивные вещества. Радиация для большинства людей — предмет непонятный. Радиация невидима и неосязаема, именно поэтому человек готов предполагать самое худшее, когда речь заходит о влиянии радиации на здоровье. Этот страх, в свою очередь, успешно эксплуатируется недобросовестными политиками, экологами и средствами массовой информации, которые заботятся не о том, чтобы правдиво и адекватно разъяснить населению, что же в действительности представляет собой радиация; наоборот, им зачастую выгодно создать вокруг этого явления негативный, зловещий ореол. А если взглянуть с научной точки зрения — что же известно о действии ионизирующего излучения на организм человека? Живая клетка на 60–70% состоит из воды. Поэтому поток частиц ионизирующего излучения, проникая в организм, взаимодействует, прежде всего, с водой, что приводит к ее радиационному разложению — этот процесс называется радиолизом воды. Под действием радиации в клетках живых организмов образуются чужеродные химические соединения. Продукты радиолиза «атакуют» молекулярные структуры клеток, разрушают их, прерывают нормальное течение внутриклеточных процессов. В итоге, нормальное функционирование клеток нарушается, и при определенных дозах они гибнут. Но клетки человеческого организма обладают способностью «залечивать» радиационные повреждения. Действительно, человек постоянно подвергается воздействию природной радиации, и в среднем облучается в год на 3,95 мЗв*. Кроме того, на Земле есть регионы, где природный фон превышает среднее по планете значение в разы и в десятки раз: в их число входят некоторые районы Франции, Финляндия, Швеция, Алтайский край, прибрежные территории юго-запада Индии, некоторые курорты Бразилии. Миллионы жителей нашей планеты испытывают повышенную радиационную нагрузку за счет природных факторов, при этом, радиация не оказывает никакого влияния на их здоровье. Более того, многие районы с повышенным радиационным фоном являются признанными курортами (например, та же Финляндия, Кавказские Минеральные Воды, Карловы Вары и пр.). Если перейти от слов к цифрам, то следует отметить следующее. Российские нормы — одни из самых жестких в мире. Так, Международное Агентство по Атомной Энергии (МАГАТЭ) признает безопасной для здоровья годовую дозу 50 мЗв. По российским нормам предельная годовая доза для персонала АЭС, работающего непосредственно в условиях воздействия ионизирующего излучения, составляет 20 мЗв. Контрольный уровень дозы, установленный в НИЦ «Курчатовский институт» - ПИЯФ, составляет 18 мЗв. Облучение персонала контролируется с помощью современных индивидуальных дозиметров — специальных приборов, которые выдаются каждому сотруднику перед входом в «грязную» зону и выводят информацию на цифровое табло. Такие же дозиметры выдаются и экскурсионным группам, посещающим ядерные установки. Необходимо также помнить, что в НИЦ «Курчатовский институт» - ПИЯФ достаточно большой штат сотрудников, много отделов, множество видов работ, в большей части которых исключены дозовые нагрузки. Например, персонал, работающий в административном корпусе, вообще не подвергается облучению. Самые большие дозы получают рабочие, которые выполняют ремонтные работы на радиоактивно загрязненном оборудовании — на них приходится более 70% коллективной дозы. Но и они получают меньше установленной в Институте пороговой безопасной дозы в 18 мЗв в год Радиоактивность ‒ это естественное явление, и в окружающей среде присутствуют природные (естественные) источники излучения. Излучение2 и радиоактивные материалы могут также иметь искусственное происхождение и могут с пользой применяться во многих сферах, в том числе в медицине, промышленности, сельском хозяйстве, научных исследованиях и при генерации энергии на АЭС. Радиационные риски, которым могут подвергаться население и окружающая среда в результате использования излучения и радиоактивного материала, должны подлежать оценке и контролироваться посредством применения норм безопасности3. Облучение тканей или органов ионизирующим излучением может приводить к гибели клеток в масштабах, которые могут быть довольно значительными и вызывать нарушения функций облученных тканей или органов. Последствия такого рода, называемые "детерминированными эффектами", клинически проявляются в человеке только тогда, когда доза облучения превышает определенный пороговый уровень. В этом случае степень тяжести детерминированного эффекта тем выше, чем больше доза. 1.4. Радиационное облучение может также приводить к нелетальной трансформации клеток, которые после этого могут сохранять способность к делению. Иммунная система человека весьма успешно обнаруживает и уничтожает аномальные клетки. Вместе с тем существует вероятность того, что нелетальная трансформация клеток после длительного латентного периода может вызывать у облученного человека заболевание раком, если эти клетки являются соматическими, или может приводить к наследственным эффектам, если это зародышевые клетки. Такие эффекты называются "стохастическими". Для целей настоящих Норм предполагается, что вероятность возможного возникновения стохастического эффекта пропорциональна полученной дозе, при этом порогового значения не существует. "Номинальный коэффициент радиационного риска дозы", учитывающий риски заболевания всеми видами рака и возникновения наследственных эффектов, составляет 5% на 2 зиверт (Зв) . Этот коэффициент риска может корректироваться по мере поступления новых научных данных. Наверное, ни для кого не секрет, что вступление в 21 век немыслимо без такого источника энергии, каковым является атомное ядро. Для человечества те огромные запасы энергии, которые заключены внутри ядер являются практически неисчерпаемыми. Если в условиях современного роста населения Земли не будет произведен скорейший переход на ядерный источник энергии, то, в конце концов, настанет тот день, когда в топках и печах догорит последняя капля, горсть природного топлива, и с этого рокового дня история человечества начнет стремительно продвигаться к своему логическому завершению. Для того чтобы оценить все “плюсы” и “минусы”, которых вероятно столько же сколько и “плюсов”, но возникающих в совершенно других условиях, необходимо посмотреть на настоящее положение дел в области использования атомной энергии. Атомная энергия широко применяется в большинстве отраслей промышленности. Контроль качества изделий, производящийся без их разрушения, может быть успешно осуществлен при использовании данного вида энергии. Получение новых полимеров, определение структуры и дефектов сплавов, исследование смазочных материалов в трущихся частях машин, холодная стерилизация перевязочных материалов и лекарственных средств, анализ жидких и газовых сред осуществляется с наибольшим успехом при непосредственном участии ядерной энергии. Атомная энергия может быть переработана в другие виды, например, в электрическую (АЭС), энергию движения ледоколов или подводных лодок. Благодаря наличию ядерного реактора на борту ледокола имеется возможность круглогодичного плавания и, следовательно, навигации в северных широтах без частых дозаправок природным топливом Медицина также широко и успешно использует достижения в области атомной энергетики в лечении различных болезней таких, как злокачественные новообразования и неопухолевые заболевания. При лечении рака энергия, возникающая при распаде радионуклидов, используемых в медицине, поражает генетический аппарат трансформированных клеток, тем самым останавливает их рост При исследовании механизмов реакций в органической и неорганической химии используется метод меченых атомов. Этот метод сыграл немаловажную роль в обнаружении новых закономерностей в физике, медицине, металлургии, биологии. Возможность определения генетического кода возникла после появления радиоавтографического анализа. Обзор только позитивных аспектов использования атомной энергии рисует весьма радужную картину, но для оценки реальной ситуации, сложившейся в настоящий момент нельзя упускать из виду те негативные моменты, которые могут возникнуть при определенных условиях и привести к не всегда предсказуемым последствиям. Наиболее чудовищное и смертельно опасное применение энергии ядер для всего человечества является развязывание атомной войны. Достаточно вспомнить, что когда ядерный смерч разбушевавшейся материи уничтожил одномоментно 300 тыс. людских жизней, по данным прессы, при бомбардировке Хиросимы и Нагасаки в 1945 году, то становится понятным опасение мировой общественности перед лицом этой грозной силы. Очевидно, что чем больше энергия используемая во благо, тем больше ее может быть использовано во зло. Количество несчастных случаев, связанных с атомной энергетикой, на АЭС, значительно меньше, чем в других областях человеческой деятельности. Тем не менее, несколько лет назад происшедшая авария в Чернобыле заставляет пересмотреть наше отношение к организации безопасности работы АЭС и защиты от неконтролируемого развития ядерной реакции. Необходимо дальнейшее снижение вероятности возникновения аварийных ситуаций, хотя вероятно, полностью избежать их никогда не удастся. Все же количество жертв на ЧАЭС удалось значительно снизить, благодаря самоотверженной работе спасателей, которые под час не жалея своей жизни шли на риск, ради того, чтобы обеспечить нормальную жизнь населению, проживавшему поблизости с местом трагедии. Стремительное развитие техники и технологии, по всей видимости, остановить нельзя, несмотря на мрачные вехи истории прогресса, такие как авария на химическом заводе в Бхопале, унесшая 2.5 тыс. человек, взрыв емкостей со сжиженным газом под Мехико (400 чел. погибло и более 4000 получили ранения), авария летательных аппаратов “Челленджер”, “Титан”, “Дельта”. Все выше сказанное подводит к тому, что внедрение атомной энергетики является неизбежным процессом в рамках настоящего исторического развития общества. Замена органического топлива ядерным решит еще одну глобальную экологическую проблему, связанную с нарастающим загрязнением окружающей среды, уменьшением доли кислорода в воздухе и парниковым эффектом, возникшей при использовании в качестве топлива нефти, мазута, угля [3]. Для того чтобы внедрение атомной энергетики и использование радиоактивности в народном хозяйстве не принесло большего ущерба, чем тот, который наносится природе в настоящий момент существует специальная дисциплина, именующаяся радиационной безопасностью, рассмотрение определения, целей и задач, а также физических основ которой будет осуществлено в следующем разделе. Физические основы радиационной безопасности. Цели и задачи. Радиационная безопасность- новая научно практическая дисциплина, возникшая с момента создания атомной промышленности, решающая комплекс теоретических и практических задач, связанных с уменьшением возможности возникновения аварийных ситуаций и несчастных случаев на радиационно-опасных объектах. Ниже освящается весь комплекс задач, стоящих перед радиационной безопасностью. Первой задачей радиационной безопасности является разработка критериев: а) для оценки ионизирующего излучения как вредного фактора воздействия на отдельных людей, популяцию в целом и объекты окружающей среды; б) способов оценки и прогнозирования радиационной обстановки, а также путей приведения ее в соответствие с выработанными критериями безопасности на основе создания комплекса технических, медико-санитарных и административно-организационных мероприятий, направленных на обеспечение безопасности в условиях применения атомной энергии в сфере человеческой деятельности. Для разработки критериев используются многолетние наблюдения за людьми, работающими на объектах с уровнем радиации, превышающим фон, а также эксперименты с животными, искусственно подвергаемыми облучению. Развертывание радиационной обстановки при аварийных ситуаций прогнозируется на основе математических расчетов и данных, полученных при изучении случившихся аварий за весь период развития атомной промышленности и энергетики. В настоящий момент существует разработанная система допустимых пределов воздействия ионизирующего излучения на человеческий организм, оформленная в виде законодательных документов Норм Радиационной Безопасности (НРБ). Второй немаловажной задачей радиационной безопасности является разработка систем радиационного контроля. Различные условия эксплуатации радиационных установок, набор используемых радиоактивных веществ, экономия материальных средств диктуют необходимость осознанного выбора средств и частоты измерения уровня радиации, концентрации радиоактивных веществ. Так, при эксплуатацииg-дефектоскопов достаточно ограничиться контролем уровня g- излучения, а на радиохимических предприятиях наряду с указанным контролем необходимо проводить измерения концентрации радиоактивных газов в воздухе и уровень загрязнения рабочих помещений с целью не допустить пере облучение сотрудников. Радиационная безопасность, кроме перечисленных выше задач, решает еще две функциональные задачи: 1) Снижение уровня облучения персонала и населения ниже (в крайнем случае, до) регламентируемого предела на основе следующих мероприятий: технических (создание защитных ограждений, автоматизация технологического процесса, очистка выбросов от радиоактивных веществ), медико-санитарных (обеспечение персонала средствами индивидуальной защиты-СИЗ, снабжение местных штабов ГО средствами защиты населения), организационных (создание специального графика работы в условиях пере облучения). 2) Создание эффективных систем радиационного контроля, позволяющих оперативно регистрировать изменения в радиационной обстановке. Наконец необходимо отметить, что надежность систем радиационной безопасности намного выше, чем систем защиты других отраслей промышленности. Это объясняется тем, что впервые использованная атомная энергия привела к серьезнейшим разрушениям и жертвам и тем самым вызвала относительно предвзятое отношение к ней, что пошло на пользу радиационной безопасности. Теперь целесообразно перейти к вопросам воздействия ионизирующего излучения на вещество, видам облучения организма, а также расчету доз, получаемых организмом. Ионизирующее излучение. Излучение, взаимодействие которого со средой вызывает образование электрических зарядов называется ионизирующим. Ионизирующее излучение представляет собой поток частиц, обладающих дискретным или непрерывным спектром энергии. Данные частицы могут иметь(a- частицы и электроны) или не иметь(g- кванты, нейтроны) электрического заряда. При прохождении через вещество заряженных частиц происходит передача ими своей энергии, расходующейся на возбуждение и ионизацию атомов и молекул. Для количественного определения переданной веществу энергии вводят понятие линейной передачи энергии S: S=dE/dl, где dE-энергия, теряемая заряженной частицей в среде при прохождении элемента пути dl. Заряженные частицы проходят разное расстояние в веществе в зависимости от их энергии и свойств мишени. Для количественного определения этого расстояния вводят понятие длины свободного пробега частицы. Можно показать, что длина свободного пробега обратно пропорциональна отношению Z/A, где Z-атомный номер атомов мишени, а А-их массовое число. В мягкой биоткани пробег a- частиц составляет несколько десятков микрон, а электронов 0.02ч1.9 см. g-кванты при прохождении через вещество способны взаимодействовать с ним тремя путями: а) фотоэффект, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему свою энергию; б) комптоновское рассеяние, при котором g-квант выбивает из электронной оболочки атома электрон и передает ему часть своей энергии; в) для g-квантов с энергиями превышающими 1.02 МэВ возможно образование электрон-позитронных пар при прохождении квантов в поле атомного ядра. Нейтроны, проходя через вещество вызывают ядерные реакции так, что в конечном итоге образуются заряженные частицы. В общем можно утверждать, что все виды перечисленных видов излучения являются ионизирующими. Далее необходимо рассмотреть каким образом ионизирующее излучение может воздействовать на организм. Облучение организма. Облучение организма можно подразделить на внешнее и внутреннее. Внешнее облучение возникает в результате попадания потока частиц в организм извне. Такое облучение могут создавать технологические установки, содержащие радиоактивные изотопы или ускорители частиц. Воздействие источника внешнего облучения на организм зависит от той энергии, которую несут частицы, величины их свободного пробега, расстояния от источника и его активности, а также времени облучения. Наибольшую опасность представляют источники нейтронного и g-излучения, так как нейтроны и g-кванты обладают наибольшей проникающей способностью. Внутреннее облучение вызывается попавшими в организм радиоактивными веществами. Наибольшую опасность представляют собой a- радиоактивные источники, поскольку вся энергия излучения поглощается в непосредственной близости от местонахождения источника, принося наибольший вред. Дозиметрия. Поглощенная и экспозиционная доза. Для определения меры той части энергии, которая поглощена веществом при облучении ионизирующим излучением используют понятие поглощенной дозы: Dп=dEп/dm, где dEп-энергия, поглощаемая элементом вещества массой dm. Единица дозы - Гр (грей) равна 1 Дж/кг. Поглощенную дозу чаще всего выражают, используя внесистемную единицу “рад”: 1рад=0.01 Дж/кг Мощность дозы Рп выражает дозу, полученную в единицу времени: Рп=Dп/t, где t-время облучения. Эту величину измеряют в рад/с или рад/ч: 1рад/с=0.01 Вт/кг. Для измерения поглощенной дозы g-излучения используют непосредственно измеряемую величину экспозиционной дозы Dэ, которая выражает ту часть энергии потока g-квантов, которая пошла на образование фотоэлектронов, комптоновских электронов и электрон-позитронных пар. Единица измерения в системе СИ-Кл/кг. Чаще измеряют экспозиционную дозу в рентгенах: 1Р=2.58. 10-4 Кл/кг. Мощность экспозиционной дозы обычно измеряют в мкР/ч. Можно показать, что, приближенно, поглощенная биологической тканью доза g-излучения численно равна экспозиционной дозе в воздухе [6]. Для этого необходимо соблюдения в системе “электронного равновесия" - условия, при котором все электроны, образующиеся в результате взаимодействия g-излучения со средой, полностью в ней поглощаются, что, по всей вероятности, и происходит в действительности. Биологический эквивалент рада. Различные виды ионизирующего излучения по-разному воздействуют на биологическую ткань. Для введения количественной характеристики биологического воздействия на организм вводят так называемый “коэффициент качества излучения”, который зависит от величины линейной передачи энергии. Эта зависимость приведена в таблице1. Таблица 1
Биологический эквивалент рада - доза любого излучения, обладающая тем же биологическим действием, что доза в 1 рад g-излучения. Коэффициенты качества приведены в таблице 2. Таблица 2.
Эквивалентная доза излучения сложного состава определяется по формуле: где Dэкв - эквивалентная поглощенная доза, бэр; Dп,i и KKi поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения. Расчет доз, создаваемых источниками b-, g-излучения. На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а,на известном расстоянии от него r, известное время t. Расчет доз, создаваемых источниками g-излучения. Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi , массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei , тогда в системе СИ получим значение дозы в Зв (зиверт)из следующего выражения: Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле: , где Q-активность источника в мКи, Кg - ионизационная постоянная Р. см2 /(ч. мКи), r-расстояние до источника в см, t-время облучения в ч. Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр. Значение Кg табулировано, но его можно вычислить по формуле: где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2 /г. Расчет доз, создаваемых источниками b- излучения. Предположим, что имеется источник b- излучения с известными для него Еmax,i и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]: где а-активность, t-время, m’i -линейный коэффициент ослабления b- излучения в воздухе. Для выражения дозы в радах необходимо воспользоваться следующей формулой [6]: , где Q-активность источника в мКи, r-расстояние до источника в см, t-время облучения в ч, Еmax,i -максимальная энергия источника, МэВ, Rmax,i -максимальный пробег в г/см2 . Предельно допустимые дозы облучения. Приведенные ниже значения предельных доз облучения, согласно НРБ- определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет Таблица 3 .
В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4: Таблица 4.
В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией. Расчет защитных экранов от g-излучения. Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i для каждой компоненты и полную дозу D0 без защитного экрана, и известна предельная доза облучения Dпр , по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]: а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон). Биологическое воздействие радиации. Ионизирующее излучение в основном носит вред тем, что под его воздействием происходит разрушение генетического аппарата клеток, что приводит либо к их гибели, либо, что хуже для организма в целом, к трансформации с утраченной дифференцировкой. Такие клетки могут образовать злокачественную опухоль, прорастающую в органы и нарушающие их работу. При получении определенной дозы облучения возникает так называемая лучевая болезнь [2], которая характеризуется поражением кроветворной системы, поражением слизистой оболочки тонкой кишки, нервной системы. Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни. Острая лучевая болезнь. Острая лучевая болезнь развивается при кратковременном облучении всего организма, при получении им дозы от 1 до 100 и более Гр, а 1-3 дня. Летальным исходом, как правило, заканчиваются случаи, в которых организм получил более 10 Гр за 1-3 дня. При получении дозы до 10 Гр развивается острая лучевая болезнь 4-х степеней тяжести. Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) - головокружение, тошнота. Латентный период (около 1 месяца) - постепенное снижение первичных признаков. Восстановление полное. Острая лучевая болезнь средней степени тяжести развивается при воздействии излучения в дозе 2.5-4 Гр. Первичная реакция (первые 1-2 часа) - головокружение, тошнота, рвота. Латентный период (около 25 дней) наличие изменения слизистых оболочек, инфекционных осложнений, возможен летальный исход. Острая лучевая болезнь тяжелой степени развивается при воздействии излучения в дозе 4-10 Гр. Первичная реакция (первые 30-60 минут) - головная боль, повторная рвота, повышение температуры тела. Латентный период (около 15 дней) - инфекционные поражения, поражения слизистых оболочек, лихорадка. Частота летальных исходов выше, чем при средней степени тяжести. Острая лучевая болезнь крайне тяжелой степени развивается при воздействии излучения в дозе более 10 Гр. Летальный исход почти неизбежен. Лечение острой лучевой болезни заключается во введении в организм антибиотиков, с целью предотвратить инфекционные осложнения, введении в организм донорских тромбоцитов, пересадке костного мозга. Хроническая лучевая болезнь возникает при ежедневном получении дозы в 0.005 Гр. Наблюдается развитие различных заболеваний, связанных с дисфункцией желез внутренней секреции, нарушение АД. Профилактика хронической лучевой болезни заключается в неукоснительном соблюдении принятых норм радиационной безопасности. Заключение. Несмотря на ту опасность, которую представляет атомная энергетика, она является той экологически чистой индустрией, на которую возлагает свои надежды все передовое человечество. Маяки на трассе Северного морского пути и кардиостимуляторы сердца, АЭС и ледоколы, системы пожарной охраны и g-дефектоскопы... вот, лишь далеко не полный список благ, где атомная энергетика успешно себя проявила. А сколько еще ждет впереди атомную энергетику трудно представить. Список литературы 1. У.Я.Маргулис. Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г. 2. Краткая медицинская энциклопедия. В 2-хтомах /Под ред. академика РАМН В.И.Покровского. М.: НПО “Медицинская энциклопедия”, “Крон-Пресс” 1994.-Т.I. 3. Б.Льюин. Гены: Пер. с англ.-М.: Мир, 1987. 4. Нормы радиационной безопасности (НРБ-76.87) и Основы санитарных правил (ОСП-72/87). М., Энергоатомиздат, 1988г. 5. Радиоактивные индикаторы в химии. Основы метода: Учебное пособие для ун-тов/Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; Под ред. Лукьянова В.Б.-3-е изд.-М.: Высш. шк., 1985. 6. Радиоактивные индикаторы в химии. Проведение эксперимента и обработка результатов. Учебное пособие для вузов. /Лукьянов В.Б., Бердоносов С.С., Богатырев И.О. и др.; М.: Высш. шк., 1977. |