Главная страница

Биология как наука о закономерностях и механизмах жизнедеятельности и развития организмов, её задачи. Объект и методы исследования


Скачать 306.68 Kb.
НазваниеБиология как наука о закономерностях и механизмах жизнедеятельности и развития организмов, её задачи. Объект и методы исследования
АнкорKollokvium_1.docx
Дата18.02.2017
Размер306.68 Kb.
Формат файлаdocx
Имя файлаKollokvium_1.docx
ТипДокументы
#2838
страница3 из 4
1   2   3   4

Экзоцитоз— перенос частиц и крупных соединений из клетки. Этот процесс, как и эндоцитоз, протекает с поглощением энергии. Основными разновидностями экзоцитоза являются:

а) секреция - выведение из клетки водорастворимых соединений, которые используются или воздействуют на другие клетки организма. Может осуществляться как неспециализированными клетками, так и клетками эндокринных желёз, слизистой желудочно-кишечного тракта, приспособленными для секреции производимых ими веществ (гормонов, нейромедиаторов, проферментов) в зависимости от определённых потребностей организма.

Секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума. Затем эти белки транспортируются к аппарату Гольджи, где они модифицируются, концентрируются, сортируются, и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в дальнейшем сливаются с плазматической мембраной, так что содержимое пузырьков оказывается вне клетки.

В отличие от макромолекул, секретируемые частицы малых размеров, например, протоны, транспортируются из клетки при помощи механизмов облегчённой диффузии и активного транспорта.

б) экскреция - удаление из клетки веществ, которые не могут быть использованы (например, удаление в ходе эритропоэза из ретикулоцитов сетчатой субстанции, представляющей собой агрегированные остатки органелл). Механизм экскреции, по-видимому, состоит в том, что вначале выделяемые частицы оказываются в цитоплазматическом пузырьке, который затем сливается с плазматической мембраной.

О́смос— процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества (меньшей концентрации растворителя).

Ту́ргор тка́ней — напряжённое состояние оболочек живых клеток. Тургорное давление — внутреннее давление, которое развивается в растительной клетке, когда в неё в результате осмоса входит вода и цитоплазма прижимается к клеточной стенке; это давление препятствует дальнейшему проникновению воды в клетку.

Плазмолиз -отделение протопласта от клеточной стенки в гипертоническом растворе. Плазмолиз возможен в клетках, имеющих плотную клеточную стенку (у растений, грибов, крупных бактерий. Клетки животных, не имеющие жесткой оболочки, при попадании в гипертоническую среду сжимаются, при этом отслоения клеточного содержимого от оболочки не происходит.

Деплазмолиз (от де… и плазмолиз) — возвращение протопласта клеток растений из состояния плазмолиза в исходное состояние, характеризующееся нормальным тургором.

Деплазмолиз происходит при перенесении плазмолизированных клеток (то есть клеток, подвергшихся плазмолизу) в воду или гипотонические растворы.

15. Физико-химические свойства гиалоплазмы. Ее значение в жизнедеятельности клетки.

Гиалоплазма (основная плазма, матрикс цитоплазмы) — основная внутренняя среда клетки, она занимает все пространство между мембранами эндоплазматической сети, органеллами, всевозможными включениями и другими структурами. Гиалоплазма (от греч. Ьуа1оэ — стекло) под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии, находятся рибосомы, микротельца, микротрубочки и различные продукты метаболизма…

Физико-химические свойства гиалоплазмы обусловлены ее коллоидным характером. Они определяются наличием в ней множества частиц, в совокупности образующих огромную поверхность взаимодействия со средой, что обеспечивает прохождение разнообразных физико-химических процессов. Благодаря силе поверхностного натяжения, возникающей на микроскопическом комочке гиалоплазмы, осуществляется процесс адсорбции— концентрации одного вещества на поверхности другого. В зависимости от увеличения, даваемого микроскопом, гиалоплазма представляется гомогенной или зернистой, гранулированной. Размер гранул близок к размеру макромолекул

16. Что такое органеллы? Какова их роль в клетке? Классификация органелл.

Органеллыпостоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. Мембранные органеллы представлены двумя вариантами: двумембранным и одномембранным. Двумембранными компонентами являются пластиды, митохондрии и клеточное ядро. К одномембранным относятся органеллы вакуолярной системы — эндоплазматический рети-кулум, комплекс Гольджи, лизосомы, вакуоли растительных и грибных клеток, пульсирующие вакуоли и др. К немембранным органеллам принадлежат рибосомы и клеточный центр, постоянно присутствующие в клетке. Выраженность элементов цитоскелета (постоянного компонента клетки) может значительно меняться в течение клеточного цикла — от полного исчезновения одного компонента (например, цитоплазматических трубочек во время деления клетки) до появления новых структур (веретена деления).

Общим свойством мембранных органелл является то, что все они построены из липопротеидных пленок (биологических мембран), замыкающихся сами на себя так, что образуются замкнутые полости, или отсеки. Внутреннее содержимое этих отсеков всегда отличается от гиалоплазмы.

Двумембранные органеллы. К двумебранным органеллам относятся пластиды и митохондрии. Пластиды —характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хлоропласты, хромопласты и лейкопласты.

17. Мембранные органеллы. Митохондрии, их структура и функции.

Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа. Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчикиферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

1. Обеспечивают клетку энергией. Энергия освобождается при распаде аденозинтрифосфорной кислоты (АТФ)

2. Синтез АТФ осуществляется ферментами на мембранах митохондрий

18. Комплекс Гольджи, его строение и функции. Лизосомы. Их строение и функции. Типы лизосом.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько, соединённых трубками, стопок.

1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети

2. Образует лизосомы

3. Формирование углеводных компонентов гликокаликса — в основном, гликолипидов.

Лизосомы представляют собой неотъемлемую часть состава клетки. Они являются разновидностью везикул. Эти клеточные помощники, являясь частью вакуома, покрыты оболочкой из мембраны и наполнены гидролитическими ферментами. Важность существования лизосом внутри клетки обеспечена секреторной функцией, которая необходима в процессе фагоцитоза и аутофагоцитоза. 

Выполняют пищеварительную функцию — переваривают пищевые частицы и удаляют отмершие органоиды.

Первичные лизосомы — это мелкие мембранные пузырьки, которые имеют деаметр около ста нм, заполненные гомогенным мелкодисперсным содержимым, являющим собой набор гидролитических ферментов. В лизосомах есть около сорока ферментов.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Если сказать иначе, то вторичные лизосомы — это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания — эндоцитозной (пиноцитозной) вакуолью.

19. ЭПС, ее разновидности, роль в процессах синтеза веществ.

Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.

Различают две разновидности эндоплазматической сети:

  • зернистая (гранулярная или шероховатая);

  • незернистая или гладкая.

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.

Функции зернистой эндоплазматической сети:

  • синтез белков, предназначенных для выведения из клетки ("на экспорт");

  • отделение (сегрегация) синтезированного продукта от гиалоплазмы;

  • конденсация и модификация синтезированного белка;

  • транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;

  • синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

  • участие в синтезе гликогена;

  • синтез липидов;

  • дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы - диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.

20. Немембранные органеллы. Рибосомы, их структура и функции. Полисомы.

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр и органоиды движения (жгутики и реснички).

Рибосома – это крупный внутриклеточный ансамбль макромолекул, который отвечает в клетке трансляцию – процесс биосинтеза полипептидных цепей на матрице информационной РНК. В состав рибосомы входит собственная, рибосомальная РНК (рРНК), а также белки.

Функции. Осуществляют синтез белковых молекул, их сборку из аминокислот

Полисома - комплекс рибосом, объединенных молекулой информационной РНК и осуществляющих синтез белка.

21. Цитоскелет клетки, его строение и функции. Микроворсинки, реснички, жгутики.

Цитоскелет – трехмерная цитоплазматическая сеть трубчатых и волокнистых структур, построенных из белковых молекул различного типа. Белковые волокна пронизывают цитоплазму эукариотических клеток и во множестве точек связаны с белками плазматической мембраны. К цитоскелету относят микротрубочки, промежуточные филаменты и микрофиламенты. 

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придает клетке типическую форму и обеспечивает связь между мембраной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках (см. с. 324), но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

Микроворсинки длиной до 1-2 мкм и диаметром до 0,1 мкм - это покрытые цитолеммой пальцевидные вырос­ты. В центре микроворсинки проходят пучки параллельных ак­тиновых филаментов, прикрепленных к цитолемме у верхушки микроворсинки и по бокам ее. Микроворсинки увеличивают свободную поверхность клеток. У лейкоцитов и клеток соеди­нительной ткани микроворсинки короткие, у кишечного эпите­лия - длинные, причем их так много, что они образуют так на­зываемую щеточную каемку. Благодаря актиновым филаментам микроворсинки подвижны.

Реснички и жгутики также подвижны, их движения маятникообразные, волнообразные. Свободная поверхность реснитчатого эпителия дыхательных путей, семявыносящих канальцев, маточных труб покрыта ресничками длиной до 5-15 мкм и диаметром 0,15-0,25 мкм. В центре каждой реснички имеется осевой филамент (аксонема), образованный девятью соединенными между собой периферическими двойными микротрубочками, которые окружают аксонему. Начальная (проксимальная) часть микротрубочки заканчивается в виде базального тельца, расположенного в цитоплазме клетки и состоящего также из микротрубочек. Жгутики по своему строению похожи на реснички, они совершают согласованные колебательные движения благодаря скольжению микротрубочек друг относительно друга.

22. Ядро. Его значение в жизнедеятельности клетки. Основные компоненты и их структурно функциональная характеристика. Эухроматин и гетерохроматин.

Ядро — часть клетки, хранит наследственную информацию . Окружено кариолеммой, имеющей поры. В ядре содержится кариоплазма, основу которой составляет белковый матрикс (негистоновые белки). В матриксе располагается хроматин — ДНК с гистоновыми и негистоновыми белками. Хроматин может быть деконденцированным (светлым) — эухроматин и наоборот, конденсированным (темным) — гетерохроматин. Чем больше эухроматина, тем интенсивнее синтетические процессы (метаболизм) в клетке, и наоборот, преобладание гетерохроматина показывает на снижение синтетических процессов.

Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость.

Эухроматин, активный хроматин — участки хроматина, сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе (в отличие от других участков, сохраняющих спирализованное состояние — гетерохроматина).

Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. В нём, помимо ДНП, имеются рибонуклеопротеидные частицы (РНП-гранулы) диаметром 200—500, которые служат для завершения созревания РНК и переноса ее в цитоплазму. Эухроматин содержит большинство структурных генов организма.

23. Ядрышко, его строение и функции. Ядрышковый организатор.

Ядрышко— самая плотная, структура ядра (D=1-5 мкм) —производный хроматина. Образует рРНК и рибосомы. 

Основной функцией ядрышка является синтез рибосомных РНК и рибосом, на которых в цитоплазме осуществляется синтез полипептидных цепей. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, её созревание, сборка рибосомных субъединиц. В ядрышке локализуются белки́, принимающие участие в этих процессах.

Ядрышковый организатор (nucleolar organizer) [греч. organizo — сообщаю стройный вид, устраиваю] — специфический участок хромосомы, участвующий в образовании ядрышек и содержащий многочисленные гены, которые кодируют рРНК. Термин «Я.о.» предложен Б. Мак-Клинток в 1934 г.

24. Что такое пластиды? Какова их роль в клетке? Классификация пластид.

Пластиды — органоиды, присущие только растительным клеткам. Обычно это крупные тельца, хорошо видимые под световым микроскопом.

Различают 3 типа пластид: бесцветные — лейкопласты, зеленые — хлоропласты, окрашенные в другие цвета — хромопласты

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент хлорофилл и небольшое количество каротина и ксантофилла. Главная функция хлоропластов - фотосинтез, в результате которого происходит образование богатых энергией органических веществ. Синтез хлорофилла обычно происходит только на свету, поэтому растения, выращенные в темноте или при недостатке света, становятся бледно-желтыми и называются этиолированными. Вместо типичных хлоропластов в них образуются этиопласты.

В клетках низших растений (водорослей) хлоропласты крупные и немногочисленные (один или несколько). Они имеют разнообразную форму (пластинчатую, звездчатую, ленточную и др.). Такие хлоропласты называются хроматофорами.

Хромопласты представляют собой пластиды, содержащие пигменты из группы каротиноидов, имеют желтую, оранжевую или красную окраску. К каротиноидам относят широко распространенные каротины (оранжевые) и ксантофиллы (желтые). Хромопласты имеют разнообразную форму. Они образуются в осенних листьях, корнеплодах (морковь), зрелых плодах и т.д. В отличие от хлоропластов, форма хромопластов очень изменчива, но видоспецифична, что объясняется их происхождением и состоянием в них пигментов.

Лейкопласты это мелкие бесцветные пластиды шаровидной, яйцевидной или веретеновидной формы. Они обычно встречаются в клетках органов, скрытых от солнечного света: в корневищах, клубнях, корнях, семенах, сердцевине стеблей и очень редко - в клетках освещенных частей растения (в клетках эпидермы). Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон.

Деятельность лейкопластов специализирована и связана с образованием запасных веществ. Одни из них накапливают преимущественно крахмал (амилопласты), другие - белки (протеопласты или алейронопласты), а третьи - масла (олеопласты).
1   2   3   4


написать администратору сайта