Главная страница

Биология клетки. Какие виды лизосом в эукариотической клетке существуют и их функциональное значение


Скачать 0.71 Mb.
НазваниеБиология клетки. Какие виды лизосом в эукариотической клетке существуют и их функциональное значение
АнкорEkzamenatsionnye_voprosy.doc
Дата10.04.2017
Размер0.71 Mb.
Формат файлаdoc
Имя файлаEkzamenatsionnye_voprosy.doc
ТипЭкзаменационные вопросы
#4674
страница3 из 10
1   2   3   4   5   6   7   8   9   10

Перечислить периоды гаметогенеза.

Он делится на сперматогенез – развитие мужских половых клеток – и овогенез – развитие женских половых клеток. В гаметогенезе выделяют 5 периодов: обособление, размножение, рост, созрева¬ние и формирование.

  1. Представить схему стадий гаметогенеза с названиями клеток и указанием числа хромосом и ДНК.

1. Обособление – первичные половые клетки обособляются от соматических клеток. Однако, они содержат диплоидный набор хромосом, их генетическая формула 2n2c.

2. Размножение – первичные половые клетки (сперматогонии или овогонии) делятся митозом. Задача этого периода увеличить число первичных половых клеток. Генетическая формула 2n2c.

3. Рост – сперматогонии и овогонии накапливают питательные вещества и увеличиваются в размерах. Теперь они называются сперматоциты I порядка и овоциты I порядка. В конце периода происходит репликация хромосом (2п2с  2n4с).

4. Созревание (мейоз) – происходит два последующих деления, между которыми нет интерфазы, и, следовательно, нет удвоения ДНК. Набор хромосом в клетках уменьшается в два раза, а набор хроматид уменьшается в 4 раза (мейоз I: 2n4с1n2с, мейоз II: 2n2с1n1с).
5. Формирование – клетки приобретают специфическое строение, обеспечивающее выполнение их функции. Этот период характерен только для сперматогенеза. Отличия овогенеза от сперматогенеза

  1. Охарактеризовать стадию лептотены профазы мейоза I.

лептотена – стадия тонких нитей. Начинается спирализация хромосом (хромосомы в световой микроскоп видны в виде нитей).

  1. Охарактеризовать стадию зиготены профазы мейоза I.

зиготена – стадия сливающихся нитей, гомологичные хромосомы отыскивают друг друга и объединяются. Этот процесс называется коньюгацией или синапсисом.

  1. Охарактеризовать стадию пахитены профазы мейоза I.

пахитена – стадия толстых нитей. Гомологичные хромосомы спирализованы и расположены близко друг к другу. Пару гомологичных хромосом называют – бивалент хромосом, или тетрада хроматид. Затем в определенных участках гомологичных хромосом происходит кроссинговер: перекрест гомологичных хромосом и обмен участками. При кроссинговере происходит разрыв двойной спирали ДНК, в одной отцовской хроматиде и одной материнской хроматиде, образовавшиеся участки соединяются наперекрест. Кроссинговер происходит в тех участках, где находятся рекомбинационные узелки синаптонемального комплекса. В конце пахитены синаптонемальный комплекс разрушается.

  1. Охарактеризовать стадию диплотены профазы мейоза I.

диплотена – стадия двойных нитей. Т. к. синаптонемальный комплекс разрушен, гомологичные хромосомы начинают отходить др. от др. Но они остаются связанными в точках кроссинговера. Эти участки хромосом называются хиазмы.

  1. Охарактеризовать стадию диакинеза профазы мейоза I.

диакинез – хиазмы сдвигаются на концы хромосом, поэтому гомологичные хромосомы образуют кольцо

  1. В чем сущность кроссинговера. Какое биологическое значение имеет этот процесс.

  2. Охарактеризовать анафазу мейоза I. Указать какое количество хромосом и ДНК будет содержаться в клетке, в эту фазу.

Анафаза 1. Гомологичные хромосомы, состоящие каждая из 2-х хроматид, отходят к противоположным полюсам. Расходятся хромосо¬мы, а не хроматиды, т.к. центромера не делится, а хромосомная нить веретена тянется лишь к одному полюсу. Очень важно, что рас¬хождение гомологичных хромосом происходит случайным образом. Поэ¬тому к каждому полюсу отходит случайное число отцовских или ма¬теринских хромосом. На каждом полюсе находится в 2 раза меньше хромосом, чем было их в клетке до начала деления. Причем эти хромосо¬мы качественно другие: большая часть каждой хромосомы – исходная хромосома; меньшая часть представлена заменённым участком гомологичной хромосомы. Так как гомологичные хромосомы – это отцовская и материнская хромосомы, можно сказать, что в результате кроссинговера образу¬ются комбинированные хромосомы. В них содержатся новые комбина¬ции отцовских и материнских генов, которые будут служить материалом для эволюционного процесса.

  1. Охарактеризовать метафазу мейоза I. Указать какое количество хромосом и ДНК будет содержаться в клетке, в эту фазу.

Метафаза 1. Конъюгированные хромосомы (биваленты) располагаются по эква¬тору клетки, образуя метафазную пластинку. Заканчивается формиро-вание веретена деления. В отличие от митоза нить веретена от каждой хромосомы направлена только к одному из полюсов. Это происходит потому, что из-за конъюгации каждая хромосома имеет только один кинетохор.

  1. Охарактеризовать профазу мейоза I.

Профаза I . Это самая продолжительная фаза мейоза I, во время которой происходят события, отличающие мейоз от митоза.

Профаза подразделяется на пять стадий, в неё вступают гаметоциты 1 порядка (2n4с)

1. лептотена – стадия тонких нитей. Начинается спирализация хромосом (хромосомы в световой микроскоп видны в виде нитей).

2. зиготена – стадия сливающихся нитей, гомологичные хромосомы отыскивают друг друга и объединяются. Этот процесс называется коньюгацией или синапсисом.

Механизм конъюгации:

а. в ДНК находятся многократно повторяющиеся последовательности, они обеспечивают точность прилегания гомологичных хромосом друг к другу по всей длине.

б. между гомологичными хромосомами образуется синаптонемальный комплекс из белков. Вдоль синаптонемального комплекса располагаются рекомбинационные узелки (в них находятся ферменты, которые участвуют в кроссинговере).

3. пахитена – стадия толстых нитей. Гомологичные хромосомы спирализованы и расположены близко друг к другу. Пару гомологичных хромосом называют – бивалент хромосом, или тетрада хроматид. Затем в определенных участках гомологичных хромосом происходит кроссинговер: перекрест гомологичных хромосом и обмен участками. При кроссинговере происходит разрыв двойной спирали ДНК, в одной отцовской хроматиде и одной материнской хроматиде, образовавшиеся участки соединяются наперекрест. Кроссинговер происходит в тех участках, где находятся рекомбинационные узелки синаптонемального комплекса. В конце пахитены синаптонемальный комплекс разрушается.

4. диплотена – стадия двойных нитей. Т. к. синаптонемальный комплекс разрушен, гомологичные хромосомы начинают отходить др. от др. Но они остаются связанными в точках кроссинговера. Эти участки хромосом называются хиазмы.

5. диакинез – хиазмы сдвигаются на концы хромосом, поэтому гомологичные хромосомы образуют кольцо.

Кроме того, в профазу 1 центриоли расходятся к разным полюсам клетки – образуется веретено деления. Разрушаются ядрышки, ядерная оболочка. В области центромеры с одной стороны каждой хромосомы образуются кинетохоры, от них отходят кинетохорные нити.

  1. Охарактеризовать профазу и метафазу мейоза II.

После короткой интерфазы, во время которой не происходит репликации ДНК (т.к. отсутствует S-фаза), наступает мейоз II. Он называется эквационным, или уравнительным.

Мейоз II напоминает митоз, но особенность в том, что набор хро¬мосом клеток, вступающий в мейоз II гаплоидный, и расходящиеся хроматиды содержат новую комби¬нацию генов по сравнению с хроматидами исходной клетки.

Итак, при сперматогенезе и овогенезе из одной исходной диплоидной клетки (2n4с) образуются четыре клетки с гаплоидным набором хромосом (1n1с), причем эти хромосомы содержат новую комбинацию генов.

  1. Охарактеризовать анафазу мейоза II. Указать количество хромосом и ДНК в клетке, в эту фазу.

  2. Охарактеризовать телофазу мейоза II.

  3. Раскрыть биологическое значение мейоза.

1. мейоз обеспечивает постоянный для каждого вида организмов набор хро¬мосом и постоянное количество ДНК. Если бы в процессе мейоза не происходило уменьшение числа хромосом, то в каждом следующем по-колении после оплодотворения число хромосом возрастало бы в 2 ра¬за. Благодаря мейозу, зрелые гаметы получают гаплоидное число хромосом, а при оплодотворении восстанавливается свойственное данному виду диплоидное число хромосом;

2. мейоз обеспечивает генетическое разнообразие гамет. Это достигается, благодаря двум явлениям: кроссинговеру и независимому расхождению мужских и женских хромосом в мейозе - I и хроматид в мейозе - II. Эти явления лежат в основе комбинативной изменчивости, поставляющей материал для естественного отбора.

  1. Отметить особенности протекания сперматогенеза в мужском организме в разные периоды онтогенеза.

1. Обособление – первичные половые клетки обособляются от соматических клеток. Однако, они содержат диплоидный набор хромосом, их генетическая формула 2n2c.

2. Размножение – первичные половые клетки (сперматогонии или овогонии) делятся митозом. Задача этого периода увеличить число первичных половых клеток. Генетическая формула 2n2c.

3. Рост – сперматогонии и овогонии накапливают питательные вещества и увеличиваются в размерах. Теперь они называются сперматоциты I порядка и овоциты I порядка. В конце периода происходит репликация хромосом (2п2с  2n4с).

4. Созревание (мейоз) – происходит два последующих деления, между которыми нет интерфазы, и, следовательно, нет удвоения ДНК. Набор хромосом в клетках уменьшается в два раза, а набор хроматид уменьшается в 4 раза (мейоз I: 2n4с1n2с, мейоз II: 2n2с1n1с).
5. Формирование – клетки приобретают специфическое строение, обеспечивающее выполнение их функции. Этот период характерен только для сперматогенеза.

  1. Отметить особенности протекания овогенеза в женском организме в разные периоды онтогенеза.

1. Обособление – первичные половые клетки обособляются от соматических клеток. Однако, они содержат диплоидный набор хромосом, их генетическая формула 2n2c.

2. Размножение – первичные половые клетки (сперматогонии или овогонии) делятся митозом. Задача этого периода увеличить число первичных половых клеток. Генетическая формула 2n2c.

3. Рост – сперматогонии и овогонии накапливают питательные вещества и увеличиваются в размерах. Теперь они называются сперматоциты I порядка и овоциты I порядка. В конце периода происходит репликация хромосом (2п2с  2n4с).

4. Созревание (мейоз) – происходит два последующих деления, между которыми нет интерфазы, и, следовательно, нет удвоения ДНК. Набор хромосом в клетках уменьшается в два раза, а набор хроматид уменьшается в 4 раза (мейоз I: 2n4с1n2с, мейоз II: 2n2с1n1с).


  1. Перечислить принципиальные различия сперматогенеза и овогенеза у человека.



Размножение сперматогоний начинается в эмбриональный период и продолжается до конца периода половой зрелости.

Размножение овогоний начинается и заканчивается в эмбриональный период.



Рост и созревание сперматозоидов происходит постоянно по достижении периода половой зрелости.

При овогенезе рост и первые стадии мейоза 1 происходят в эмбриогенезе.

Мейоз 1 останавливается на стадии диплотены. Т.к. она растягивается во времени, её называют диктиотеной. С наступлением периода полового созревания, циклично 1 раз в месяц, 1 клетка заканчивает мейоз 1, и на стадии метафазы мейоза 2 происходит овуляция, т.е. выход яйцеклетки из яичника. Мейоз 2 заканчивается после оплодотворения.



В период роста сперматоциты 1 порядка меньше.

В период роста овоциты 1 порядка крупнее сперматоцитов.



Один сперматоцит 1 порядка дает начало четырём сперматозоидам одинакового размера.


Один овоцит 1 порядка дает начало одной крупной яйцеклетке и трём мелким полярным (направительным) тельцам, которые погибают.



Есть период формирования

Нет периода формирования



Молекулярные основы наследственности.

  1. Дать определение генетического кода.

Генетический код – это принцип записи наследственной информации о последовательности аминокислот в белке, через последовательность нуклеотидов в ДНК.

  1. Что представляют собой характеристики генетического кода: триплетен, неперекрывающийся, без запятых.

триплетность. Структура белка определяется последовательностью аминокислот. Последовательность аминокислот в белке кодируется последователь¬ностью нуклеотидов в ДНК.

В состав белков организмов входят 20 аминокислот, а нуклеотидов всего четыре, следовательно, для кодирования всех аминокислот необходимо сочетание нуклеотидов. Пары нуклеотидов дадут возможность кодирования 16 (42) аминокис¬лот. Тройки нуклеотидов (триплет, или кодон) позволяют получить 64 (43) комбинации, что достаточно для кодирования всех аминокислот.

непрерывность – за одним триплетом идет следующий триплет, между триплетами нет промежутков и нет одиночных нуклеотидов.

неперекрываемость – последний нуклеотид предыдущего триплета не явля¬ется началом следующего триплета.

  1. Что представляют собой характеристики генетического кода: вырожден, специфичен, универсален.

вырожденность. Раньше считали, что каждая аминокислота кодируется своим триплетом, тогда получалось, что 44 триплета (64-20 = 44) являются лишними. Оказалось, что одним триплетом кодируются только две аминокислоты (метионин и триптофан), остальные кодируются 2,3,4,6 трип¬летами. Так аминокислоты лейцин, серин, аргинин кодируются шестью триплетами каждая. Кодирование одной аминокислоты несколькими триплетами и есть вырожденность.

Всего в кодировании занят 61 кодон. Три кодона: АТТ, АТЦ, АЦТ кодируют не аминокислоты, а окончание записи информации о первичной структуре белка (как точка в конце предло¬жения). Это стоп – кодоны, которые являются последним триплетом гена. Когда стоп-кодоны перепишутся на и-РНК, они будут выглядеть так: УАА, УАГ, УГА. Теперь они будут означать окончание синтеза белка.

однозначность – каждый триплет кодирует только одну ами¬нокислоту.

универсальность – сущность кодирования одинакова от бак¬терий до человека.

  1. Представить схему центральной догмы молекулярной биологии.

  2. Перечислить особенности РНК-полимераз.

РНК-полимераза 1 – отвечает за синтез крупных рРНК, она локализована в ядрышке.

РНК-полимераза 2 – отвечает за синтез иРНК, она локализована в цитоплазме

РНК-полимераза 3 – отвечает за синтез тРНК и мелких рРНК (она локализована в рибосомах).

  1. Что представляет собой промотор в области гена, его функция.

На первом этапе РНК полимераза узнает определенную последовательность нуклеотидов в ДНК перед геном, эта последовательность называется – промотор.

Узнав промотор, РНК-полимераза фиксируется на нем, затем происходит расплетание двойной спирали ДНК, и участок одной цепи ДНК становится матрицей для синтеза молекулы и-РНК.

  1. Поясните понятия: транскрипт и транскриптом.

Транскрипт- молекула РНК, образующаяся в результате транскрипции (экспрессии соответствующего гена или участка ДНК).

Транскриптом — совокупность всех транскриптов, синтезируемых одной клеткой или группой клеток, включая мРНК и некодирующие РНК. Понятие «транскриптом» может обозначать полный набор транскриптов в данном организме или специфический набор транскриптов (молекул РНК), представленный в клетках определенного типа.

  1. Какие молекулы синтезирует РНК-полимераза I.

РНК-полимераза 1 – отвечает за синтез крупных рРНК, она локализована в ядрышке.

  1. Какие молекулы синтезирует РНК-полимераза II.

РНК-полимераза 2 – отвечает за синтез иРНК, она локализована в цитоплазме

  1. Какие молекулы синтезирует РНК-полимераза III.

РНК-полимераза 3 – отвечает за синтез тРНК и мелких рРНК (она локализована в рибосомах).

  1. К чему сводится механизм транскрипции (синтез РНК на матрице ДНК).

Выделяют 3 этапа транскрипции: стадия инициации, стадия элонгации, стадия терминации.

І. Стадия инициации. На первом этапе РНК полимераза узнает определенную последовательность нуклеотидов в ДНК перед геном, эта последовательность называется – промотор.

Узнав промотор, РНК-полимераза фиксируется на нем, затем происходит расплетание двойной спирали ДНК, и участок одной цепи ДНК становится матрицей для синтеза молекулы и-РНК.

ІІ стадии элонгации (удлинения).

РНК-полимераза движется вдоль этого участка, синтезируя молекулу и-РНК. Синтез идет из свободных нуклеотидов присутствующих в ядерном соке и основан на принципе комплементарности.

ЦДНК  Г РНК

ГДНК  ЦРНК

ТДНК  АРНК

АДНК  УРНК

ІІІ. Стадия терминации. Синтез РНК продолжается до тех пор, пока РНК- полимераза не достигнет особой последовательности нуклеотидов, которая называется терминирующий сигнал транскрипции или стоп сигнал. На этом транскрипция заканчивается, освобождается молекула и-РНК и фермент РНК- полимераза, восстанавливается двойная спираль ДНК.

В результате транскрипции образуется первичный транскрипт иРНК.
  1. 1   2   3   4   5   6   7   8   9   10


написать администратору сайта