Главная страница
Навигация по странице:

  • 2.1 Идентификация по рисунку папиллярных линий

  • 2.2 Идентификация по радужной оболочке глаз

  • Биометрические средства иденфикации личности


    Скачать 209.89 Kb.
    НазваниеБиометрические средства иденфикации личности
    Дата03.04.2023
    Размер209.89 Kb.
    Формат файлаdocx
    Имя файлаbestreferat-198255.docx
    ТипЛитература
    #1033815
    страница2 из 5
    1   2   3   4   5

    2. Особенности реализации статических методов биометрического контроля
    2.1 Идентификация по рисунку папиллярных линий
    Применение данной технологии получило широкое распространение в системах автоматической идентификации по отпечатку пальца (AFIS).

    Весь процесс идентификациизанимает не более нескольких секунд и не требует усилий от тех, кто использует данную систему доступа. В настоящее время уже производятся подобные системы размером меньше колоды карт. Определенным недостатком, сдерживающим развитие данного метода, является предубеждение части людей, которые не желают оставлять информацию о своих отпечатках пальцев. При этом контраргументом разработчиков аппаратуры является заверение в том, что информация о папиллярном узоре пальца не хранится - хранится лишь короткий идентификационный код, построенный на базе характерных особенностей отпечатка вашего пальца. По данному коду нельзя воссоздать узор и сравнить его с отпечатками пальцев, оставленными, допустим, на месте преступления. Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Хотя процент ложных отказов при идентификации составляет около 3 %, ошибка ложного доступа - меньше 0,00001 % (1 на 1 000 000).

    Существует два основных алгоритма сравненияполученного кода с имеющимся в базе шаблоном: по характерным точкам и по рельефу всей поверхности пальца. В первом случае выявляются характерные участки и запоминается их взаиморасположение. Во втором случае запоминается вся «картина» в целом. В современных системах используется также комбинация обоих алгоритмов, что позволяет повысить уровень надежности системы.

    Традиционно американские компании занимают лидирующие позиции в разработке биометрических систем безопасности, в этом направлении успешно работают такие фирмы, как Identix, T-Netix, American Biometric Company, National Registry, sagem, Morpho, Verditicom, Infenion. Из российских компаний-разработчиков идентификационных устройств по папиллярным узорам пальцев заслуживает внимания компания «Биолинк».

    С целью идентификации личности по рисунку папиллярных линий пальца проверяемый набирает на клавиатуре свой идентификационный номер и помещает указательный палец на окошко сканирующего устройства. При совпадении получаемых признаков с эталонными, предварительно заложенными в память ЭВМ и активизированными при наборе идентификационного номера, подается команда исполнительному устройству. Хотя рисунок папиллярных линий пальцев индивидуален, использование полного набора их признаков чрезмерно усложняет устройство идентификации. Поэтому с целью его удешевления применяют признаки, наиболее легко измеряемые автоматом. Выпускают сравнительно недорогие устройства идентификации по отпечаткам пальцев, действие которых основано на измерении расстояния между основными дактилоскопическими признаками. На величину вероятности ошибки опознания влияют также различные факторы, в том числе температура пальцев (рис. 3). Кроме того, процедура аутентификации у некоторых пользователей ассоциируется с процедурой снятия отпечатков у преступников, что вызывает у них психологический дискомфорт.

    Дактилоскопия построена на двух основных качествах, присущих папиллярным узорам кожи пальцев и ладоней:

    - стабильность рисунка узора на протяжении всей жизни человека;

    - уникальность рисунка, что означает отсутствие двух индивидуумов с одинаковыми дактилоскопическими отпечатками.



    Рис. 3. Процесс аутентификации по отпечаткам пальцев
    Распознавание отпечатка пальца основано на анализе распределения особых точек (концевых точек и точек разветвления папиллярных линий), местоположение которых задается в декартовой системе координат.

    Для снятия отпечатков в режиме реального времени применяются специальные контактные датчики различных типов. Системы идентификации по отпечаткам пальцев выпускаются в течение почти трех десятков лет Однако благодаря достигнутым успехам в области машинного распознавания отпечатков только в последние годы заметно увеличилось число фирм, выпускающих терминалы персональной аутентификации на базе дактилоскопии.

    Американская фирма Fingermatrix предложила терминал Ridge Reader, который благодаря процедуре компенсации различных отклонений, возникающих при снятии отпечатка пальца в реальных условиях, а также применяемому способу «очищения» изображения и восстановления папилярного узора (который может быть «затуманен» из-за наличия на пальце грязи, масла или пота) допускает коэффициент ошибок 1-го рода не более 0,1 %, 2-го рода - не более 0,0001 %. Время обработки изображения составляет 5 с, регистрации пользователя составляет 2-3 мин. Для хранения одного цифрового образа отпечатка (эталона) расходуется 256 байт памяти.

    Компания De La Rue Printrak Inc. производит систему PIV-100 на базе терминала аутентификации по отпечаткам пальцев. Кроме этих терминалов, в состав аппаратуры входят центральный процессор, контрольный пульт, дисплей, принтер, накопители на винчестерских дисках (для хранения базы данных), накопители на гибких дисках (для резервной памяти).

    В этой системе требуемые коэффициенты ошибок могут выбираться в зависимости от необходимого уровня обеспечения безопасности путем под-стройки внутренних зависимых системных параметров, таких как пороговые значения принятия решения, сопоставляемые характеристики, стратегия распознавания. Но за возросшую точность приходится расплачиваться уменьшением быстродействия и снижением удобств для пользователей. Автоматическая обработка полученного дактилоскопического изображения начинается с преобразования первичного образа с разрешением 512 х 512 точек изображения и плотностью 8 бит на точку к конечному набору (множеству), состоящему примерно из 100 особых точек папиллярного узора, каждая из которых занимает 3 байт памяти. В результате объем памяти для хранения одного отпечатка по сравнению с первоначальным изображением уменьшается примерно в 1000 раз. Сопоставление двух дактилоскопических образов - оригинального и эталонного, хранящегося в памяти системы, - производится с помощью некоторой корреляционной процедуры. Время регистрации пользователя в базе данных - меньше 2 мин; вся процедура проверки пользователя занимает около 10 с, из которых 2 с уходит на аутентификацию, т. е. на вычисления по сопоставлению отпечатков.

    Говоря о надежности аутентификационной процедуры по отпечаткам пальцев, необходимо рассмотреть также вопрос о возможности их копирования и использования другими лицами для получения несанкционированного доступа. В качестве одной из возможностей по обману терминала специалисты называют изготовление искусственной кисти с требуемыми отпечатками пальцев (или изъятия «подлинника» у законного владельца). Но существует и способ борьбы с такой фальсификацией. Для этого в состав терминального оборудования должны быть включены инфракрасный детектор, который позволит зафиксировать тепловое излучение от руки (или пальца), и (или) фотоплетизмограф, который определяет наличие изменений отражения света от поверхности потока крови.

    Другим способом подделки является непосредственное нанесение папиллярного узора пальцев законного пользователя на руки злоумышленника с помощью специальных пленок или пленкообразующих составов. Такой способ довольно успешно может быть использован для получения доступа через КПП. Однако в этом случае необходимо получить качественные отпечатки пальцев законного пользователя, причем именно тех пальцев, которые были зарегистрированы системой, и именно в определенной последовательности (например, если система настроена на проверку не одного, а двух и более пальцев по очереди), но эта информация неизвестна законному пользователю и, следовательно, он не может войти в сговор с нарушителем.

    По оценкам западных экспертов до 80% рынка биометрии сегодня занимают устройства идентификации по отпечаткам пальцев. Это объясняется следующим: во-первых, это один самых доступных и недорогих методов, во-вторых, методика идентификации по отпечаткам пальцев проста в использовании, удобна и лишена психологических барьеров, которые имеются, например, у систем, требующих воздействия на глаз световым пучком.

    Известны три основных подходак реализации систем идентификации по отпечаткам пальцев. Самый распространенный на сегодня способ строится на использовании оптики - призмы и нескольких линз со встроенным источником света (рис. 4).
    Р
    ис. 4. Функциональная схема системы FIU фирмы SONY
    Свет, падающий на призму, отражается от поверхности, соприкасаемой с пальцем пользователя, и выходит через другую сторону призмы, попадая на оптический сенсор (обычно, монохромная видеокамера на основе ПЗС-матрицы), где формируется изображение. Недостатки такой системы: отражение сильно зависит от параметров кожи - сухости, присутствия масла, бензина, других химических элементов. Например, у людей с сухой кожей наблюдается эффект размытия изображения и в результате - высокая доля ложных срабатываний.

    Д
    ругой способ использует методику измерения электрического поля пальца с использованием полупроводниковой пластины. Когда пользователь устанавливает палец в сенсор, он выступает в качестве одной из пластин конденсатора (рис. 5). Другая пластина конденсатора - это поверхность сенсора, которая состоит из кремниевого чипа, содержащего 90 тыс. конденсаторных пластин с шагом считывания 500 точек на дюйм. В результате получается 8-битовое растровое изображение гребней и впадин пальца.
    Естественно, в данном случае жировой баланс кожи и степень чистоты рук пользователя не играет никакой роли. Система идентификации в этом случае, получается гораздо более компактная. Недостатки метода - кремниевый чип требует эксплуатации в герметичной оболочке, а дополнительные покрытия уменьшают чувствительность системы. Кроме того, некоторое влияние на изображение может оказать сильное внешнее электромагнитное излучение.

    Существует еще один метод реализации таких систем. Его разработала компания «Who Vision Systems». В основе их системы TactileSense - электрооптический полимер. Этот материал чувствителен к разности электрического поля между гребнями и впадинами кожи. Градиент электрического поля конвертируется в оптическое изображение высокого разрешения, которое затем переводится в цифровой формат, который уже можно передавать в ПК по параллельному порту или USB-интерфейсу. Метод также нечувствителен к состоянию кожу и степени ее загрязнения, в том числе и химического. Вместе с тем считывающее устройство имеет миниатюрные размеры и может быть встроено, например, в компьютерную клавиатуру. По утверждению производителей, система имеет колоссально низкую себестоимость (на уровне нескольких десятков долларов).

    Характеристики некоторых методов приведены в табл. 3.
    Таблица 3. Характеристики типовых систем идентификации по отпечаткам пальцев

    Свойства

    Оптическая система

    Полупроводнико-вая технология

    Электрооптический полимер

    Небольшие размеры

    Нет

    Да

    Да

    Восприимчивость к сухой коже

    Нет

    Да

    Да

    Прочность поверхности

    Средняя

    Низкая

    Высокая

    Энергопотребление

    Среднее

    Низкое

    Низкое

    Цена

    Средняя

    Высокая

    Низкая


    Полученный одним из описанных методов аналоговый видеосигнал преобразуется в цифровую форму, после чего из него извлекается набор характеристик, уникальных для этого отпечатка пальца. Эти данные однозначно идентифицируют личность. Данные сохраняются и становятся уникальным шаблоном отпечатка пальца конкретного человека. При последующем считывании новые отпечатки пальцев сравниваются с хранимыми в базе.

    В самом простом случае при обработке изображения на нем выделяются характерные точки (например, координаты конца или раздвоения папиллярных линий, места соединения витков). Можно выделить до 70 таких точек и каждую из них охарактеризовать двумя, тремя или даже большим числом параметров. В результате можно получить от отпечатка пальца до пятисот значений различных характеристик.

    Б
    олее сложные алгоритмы обработки соединяют характерные точки изображения векторами и описывают их свойства и взаимоположение (рис. 6). Как правило, набор данных, получаемых с отпечатка, занимает до 1 Кбайт.
    Рис. 6. Изображение отпечатка пальца (а) и его «образ» (б)
    Алгоритм обработки позволяет хранить не само изображение, а его «образ» (набор характерных данных).

    Из соображений безопасности ряд производителей (SONY, Digital Persona и др.) используют при передаче данных средства шифрования. Например, в системе U are U фирмы «Digital Persona» применяется 128-битовый ключ, и, кроме этого, все пересылаемые пакеты имеют временную отметку, что исключает возможность их повторной передачи.

    Хранение данных и сравнение при идентификации происходит в компьютере. Практически каждый производитель аппаратной части вместе с системой поставляет и уникальное программное обеспечение, адаптированное чаще всего под Windows NT.

    Так как большинство систем предназначено для контроля доступа к компьютерной информации и ориентировано в первую очередь на рядового пользователя, ПО отличается простотой и не требует специальной настройки.

    Следует отметить одну особенность СКУД, в которой используются отпечатки пальцев: такие устройства более громоздки, чем другие типы считывателей. Это связано с тем, что, во-первых, нет необходимости экономить место на рабочем столе, а во-вторых, считыватели должны быть автономны. Поэтому, кроме сканера, в один корпус помещают устройство принятия решения и хранения информации, клавиатуру (для увеличения степени защищенности) и жидкокристаллический дисплей (для удобства настройки и эксплуатации). При необходимости к системе может быть подключен считыватель карт (смарт, магнитных и т. д.). Существуют и более экзотические модели. Например, фирма SONY поместила в корпус прибора динамик, а фирма «Mytec» считает, что будущее за интеграцией биометрии и таблеток iButton.

    Кроме того, такие устройства должны обеспечивать простое подключение электрозамков и датчиков сигнализации и легко объединяться в сеть (наличие интерфейсов RS-485).

    В табл. 4 приведены сравнительные характеристики устройств, использующих методы идентификации по отпечаткам пальцев. Одно из них -устройство Veriprint 2100 фирмы «Biometric ID» - показано на рис. 7.
    Таблица 4. Сравнительные характеристики устройств, использующих методы идентификации по отпечаткам пальцев

    Характеристика

    Finger Scan фирмы «Identix»

    Veriprint 2100 фирмы «Biometric ID»

    Ошибка 1 рода

    1%

    0,01 %

    Ошибка 2 рода

    0,0001%

    0,01 %

    Время регистрации

    25 с

    <5 с

    Время идентификации

    1 с

    1 с

    Интерфейс

    RS232, RS485, TTL, вх/вых сигнализации

    RS232, RS485, TTL

    Макс, число пользователей

    50 000 (сетевая версия)

    8 000

    Флеш-память

    512 кВ или 1,5 MB

    2 MB или 8 MB

    Дополнение

    ЖК-дисплей, клавиатура

    ЖК-дисплей, клавиатура


    О
    тметим, что все представленные устройства предназначены для работы только внутри помещения. Поверхность сканера должна быть чистой, поэтому априори исключаются запыленные склады, бензоколонки и т. д. Наиболее частое применение - банковские системы (доступ к сейфам, хранилищам ценностей), контроль доступа в различные клубы и загородные резиденции, системы электронной коммерции.

    Рис. 7. Система Veriprint 2000 позволяет контролировать доступ в помещения
    2.2 Идентификация по радужной оболочке глаз
    Первооткрывателем в области идентификации личности по радужной оболочке глаза является доктор Джон Даугман. В 1994 г. он запатентовал в США метод распознавания радужной оболочки глаза (US Patent S, 291, 560). Разработанные им алгоритмы используются до сих пор.

    С помощью этих алгоритмов необработанные видеоизображения глаза преобразуются в уникальный идентификационный двоичный поток Iris-код, полученный в результате определения позиции радужки, ее границы и выполнения других математических операций для описания текстуры радужки в виде последовательности чередования фаз, похожей на штрих-код.

    Полученный таким образом Iris-код используется для поиска совпадений в базах данных (скорость поиска - около 1 млн. сравнения Iris-кодов в 1 с) и для подтверждения или неподтверждения заявленной личности

    Преимущество сканеров для радужной оболочки глаза состоит в том, что они не требуют от пользователя сосредоточения на цели, так как образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза может быть отсканировано на расстоянии менее 1 м, что делает возможным использование сканеров для радужной оболочки глаза, допустим, в банкоматах. Разработкой технологии идентификации личности на основе принципа сканирования радужной оболочки глаза в настоящее время занимаются более 20 компаний, в том числе British Telecom, Sensar, японская компания Oki.

    Различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

    В качестве примера современной системы идентификации на основе анализа радужной оболочки глаза рассмотрим решение, предложенное компанией LG.

    Система IrisAccess позволяет менее чем за 1 с отсканировать рисунок радужной оболочки глаза, обработать и сравнить с 4 тыс. других записей, которые она хранит в своей памяти, а затем послать соответствующий сигнал в охранную систему. Технология - полностью бесконтактная. На основе изображения радужной оболочки глаза строится компактный цифровой код размером 512 байт. Устройство имеет высокую надежность по сравнению с большинством известных систем биометрического контроля, поддерживает объемную базу данных, выдает звуковые инструкции на русском языке, позволяет интегрировать в систему карты доступа и ПИН-клавиатуры. Один контроллер поддерживает четыре считывателя Система может быть интегрирована с LAN Система IrisAccess 3000 состоит из оптического устройства внесения в реестр E01J3000, удаленного оптического устройства R01J3000, контрольного устройства опознавания ICLI3000, платы захвата изображения, дверной интерфейсной платы и PC-сервера. Если требуется осуществлять контроль за несколькими входами, то ряд удаленных устройств, включая ICU3000 и R01J3000, может быть подключен к PC-серверу через локальную сеть (LAN).

    Представляет интерес камера для идентификации личности путем сканирования радужной оболочки глаза, используемая в системах защиты и безопасности для компьютеров типа десктоп/лэптоп. Разработки визуальных систем (Vision Systems) компании Panasonic и хорошо показавшие себя на прак-тике разработки в области идентификации личности на основе рисунка радужной оболочки глаз компании Iridian Technologies позволили создать легкие в использовании и отличающиеся высокой точностью средства, которые можно использовать в широком диапазоне современных и будущих потребностей в области обеспечения безопасности.

    Камера Authenticam™ компании Panasonic в сочетании с программным продуктом PrivatelD™ компании Indian Technologies представляет собой экономически выгодный и надежный путь обеспечения безопасности доступа. Для такой камеры характерны безопасность и простота использования. Достаточно взглянуть в объектив камеры с расстояния приблизительно 50 см, и менее чем через 2 с произойдет захват изображения.

    Программный продукт PrivatelD™ обрабатывает рисунок радужной оболочки глаз и кодирует полученную информацию в виде 512-байтовой записи IrisCode. Эти записи вводятся для хранения в память и используются для сравнения с другими записями кодов IrisCodes - для идентификации личности при любых транзакциях и деловых операциях, когда для сравнения представляется радужная оболочка глаза живого человека.

    Дифференциатор ключей для идентификации личности по рисунку радужной оболочки глаза осуществляет поиск в базе данных для нахождения соответствующего идентификационного кода. При этом база данных может состоять из неограниченного числа записей кодов IrisCode. Технология допуска, основанная на сканировании радужной оболочки глаза, уже несколько лет успешно применяется в государственных организациях США и в учреждениях с высокой степенью секретности (в частности, на заводах по производству ядерного вооружения). Эффективность этого способа доказана, он безопасен для пользователя и надежен в работе. Он обеспечивает моментальную аутентификацию личности, предназначенную для замены символов ПИН-кодов и паролей.

    Многие эксперты подчеркивают «незрелость» технологии, хотя потенциальные возможности метода достаточно высоки, так как характеристики рисунка радужной оболочки человеческого глаза достаточно стабильны и не изменяются практически в течение всей жизни человека, невосприимчивы к загрязнению и ранам. Отметим также, что радужки правого и левого глаза по рисунку существенно различаются. Этот метод идентификации отличается от других большей сложностью в использовании, более высокой стоимостью аппаратуры и жесткими условиями регистрации.
    1   2   3   4   5


    написать администратору сайта